A New Method for Stereoselective Homoallylic Amine Synthesis

Susan K. Armstrong, ${ }^{a}$ Eric W. Collington, ${ }^{\text {b }}$ Julian G. Knight, ${ }^{a}$ Alan Naylor ${ }^{\boldsymbol{b}}$ and Stuart Warrena *
${ }^{a}$ University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW
${ }^{\text {b }}$ Glaxo Group Research, Park Road, Ware, Herts SG12 ODP

Nitrile oxide cycloadditions to readily available allylic diphenylphosphine oxides 2 proceeded regioselectively and stereoselectively to give 5-(1^{\prime}-diphenylphosphinoylalkyl)isoxazolines 4 and 5. These heterocycles were reduced to δ-amino- β-hydroxyalkyldiphenylphosphine oxides 6 and 7 using a combination of sodium borohydride and nickel(II) chloride. Stereospecific elimination of diphenylphosphinic acid from the reduction products using sodium hydride in N, N dimethylformamide gave homoallylic primary amines 8 and 9 of defined stereochemistry.

Homoallylic amines such as 8 and 9 form structural units in a variety of natural products, e.g. actinobolin. ${ }^{1}$ They have also been used as synthetic precursors to natural products, including the sphingosine bases. ${ }^{2}$ There are two main synthetic routes to homoallylic amines in the literature: the addition of allyl metal reagents to imines, ${ }^{3,4}$ and Weinreb's hetero-Diels-Alder approach. ${ }^{1.2}$ The first, and more widely applied, of these is generally used to make terminal alkenes, ${ }^{3}$ although cis-1,2disubstituted alkenes are also available. ${ }^{4}$ The second route is more versatile, ${ }^{2}$ but neither method gives direct access to unprotected primary homoallylic amines. Our new synthesis ${ }^{5}$ converts allylic alcohols 1 in four steps, as outlined in Scheme 1, into the longer-chain homoallylic amines 8 and 9 .

$+$

4

1. Separate
2. $[4 \mathrm{H}]$

6

1

The allylic alcohol starting materials 1 were efficiently synthesised, where necessary, from aldehydes 10 via HornerEmmons reaction with triethyl phosphonoacetate, and $\mathrm{Bu}_{2}^{\mathrm{i}} \mathrm{AlH}$
(DIBAL) reduction of the resulting α, β-unsaturated esters 11. Treatment of the alcohols 1 with chlorodiphenylphosphine and pyridine in diethyl ether gave alkyl diphenylphosphinites 12. These were not isolated, but the ether solution was filtered to remove pyridinium chloride and evaporated to dryness under an inert atmosphere. Allylic diphenylphosphine oxides 2 were then obtained in moderate to good yields via a $[2,3]$ sigmatropic Arbuzov rearrangement, accomplished by heating alkyl diphenylphosphinites $\mathbf{1 2}$ to reflux overnight in toluene (Scheme 2).

Scheme 2 Reagents and conditions: i, (EtO) $)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, 80-95 \%$; ii, $\left(\mathrm{Bu}^{\mathrm{i}}\right)_{2} \mathrm{AlH}$; iii, $\mathrm{Ph}_{2} \mathrm{PCl}$, pyridine, $\mathrm{Et}_{2} \mathrm{O}$; iv, toluene, reflux, $17 \mathrm{~h}, 26$ 91% over 2 or 3 steps

The carbon chain elongation was achieved by 1,3-dipolar cycloaddition of nitrile oxides ${ }^{6} \mathbf{3}$ to alkenes 2 . As expected for a monosubstituted, moderately electron-rich double bond, these cycloadditions were totally regioselective, giving exclusively $3,5-$ disubstituted isoxazolines 4 and $5 . \dagger$ Several methods were investigated for in situ nitrile oxide generation, including the treatment of chloraldoximes with triethylamine, ${ }^{7}$ the action of phenyl isocyanate or POCl_{3} on nitroalkanes, ${ }^{8}$ and the action of chloramine-T on aldoximes. ${ }^{9}$ The best conditions proved to be aqueous NaOCl (bleach) over a dichloromethane solution of the alkene 2 and an aldoxime as the nitrile oxide precursor. Even under these conditions, the cycloadditions were very slow, typically requiring 1 to 3 weeks for completion. Sonicating the reaction mixture in an ultrasound washing-up bath gave a dramatic, if unexplained, acceleration: under sonication, most reactions reached completion within a few hours or days. Ultrasound has been used to accelerate nitrone cycloadditions. ${ }^{10}$ However, if the allylic R^{1} substituent in 2 was too large

[^0]Table 1 Results of nitrile oxide cycloadditions

Alkene 2, R^{1}	Nitrile oxide 3, R^{2}	Method(s) ${ }^{\text {a }}$	4,5-Dihydroisoxazoles $4,5$	Yield (\%)	Ratio anti-4: syn-5 ${ }^{\text {b }}$
2a, H	3a, Et	C (H)	4 or 5a	$67^{c}\left(71^{c}\right)$	-
2a	3b, Pr	A	4 or 5b	96	-
2a	3c, Hexyl	A	4 or 5c	95	--
2a	3d, $\mathrm{C}_{11} \mathrm{H}_{23}$	E	4 or 5d	50	-
2a	3e, Ph	A (B)	4 or 5e	55 (62)	-
2b, Me	3f, Me	A	4 f	$10^{\text {c }}$	- ${ }^{\text {d }}$
2b	3a	C	4g, 5g	$54^{\text {c }}$	84:16
2b	3b	B (D)	4h, 5h	$84\left(41^{\text {c }}\right.$)	$80: 20(65: 35)$
2b	3c	A	4i, 5i	'107'	71:29
2b	3d	A (E)	4j, 5j	$66^{c}(53)$	$80: 20(80: 20)$
2b	3e	A (B)	4k, 5k	93 (93)	78:22 (84:16)
2b	$3 \mathrm{~g}, \mathrm{CO}_{2} \mathrm{Et}$	F	41, 51	$44^{\text {c }}$	80:20
2b	3h, $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2} \mathrm{Me}$	G	$4 \mathrm{~m}, 5 \mathrm{~m}$	$74^{\text {c }}$	83:17
2b	$3 \mathrm{i},\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{Me}$	A	$4 \mathrm{n}, 5 \mathrm{n}$	$66^{\text {c }}$	91:9
2c, Et	3d	A	40, 50	$22^{\text {c }}$	78:22
2 c	3 i	A	4p, 5p	$20^{\text {c }}$	67:33
2d, Pr	3 d	A	4q, 5q	$33^{\text {c }}$	72:28
2d	3 e	A	$4 \mathrm{r}, 5 \mathrm{~s}$	$74^{\text {c }}$	85:15
2d	3h	G	4s, 5 s	$40^{\text {c }}$	85:15
2d	3 i	A	4t, 5t	$24^{\text {c }}$	72:28
2e, $\mathrm{Bu}^{\text {i }}$	3 e	A (B)	4u, 5u	$50^{c}(55)^{\text {c }}$	84:16(84:16)

${ }^{a}$ For detailed methods, see Experimental section. $\mathrm{A}=$ oxime + bleach, stirred; $\mathrm{B}=$ oxime + bleach, sonicated; $\mathrm{C}=$ oxime $+\mathrm{Cl}{ }_{2}$ gas; $\mathrm{D}=$ oxime + chloramine-T; $\mathrm{E}=$ oxime $+\mathrm{NBS} ; \mathrm{F}=$ chloroxime $+\mathrm{Et}_{3} \mathrm{~N} ; \mathrm{G}=$ nitroalkane $+\mathrm{PhNCO} ; \mathrm{H}=$ modification of method $\mathrm{C} .{ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR on crude reaction mixture and/or by product isolation. ${ }^{c}$ Some unchanged alkene 2 isolated also. ${ }^{d}$ None of minor isomer isolated.

Fig. 1
(e.g. $\mathrm{R}^{1}=\mathrm{Pr}^{\mathrm{i}}, \mathrm{Ph}$, or cyclopentyl), no cycloadducts were obtained under any conditions.

The cycloadditions were moderately stereoselective under any of the conditions tested (see Table 1). Generally, the conditions used had very little effect on the selectivity. In almost every case, the diastereoisomeric products could be separated by flash column chromatography, and purified further by recrystallisation if necessary. The cycloadducts 41 and 51 from alkene $2 \mathrm{~b}\left(\mathrm{R}^{1}=\mathrm{Me}\right)$ and nitrile oxide $3 \mathrm{~g}\left(\mathrm{R}^{2}=\mathrm{EtO}_{2} \mathrm{C}\right)$ could not be separated, however, so this nitrile oxide was used only once. The relative stereochemistries of the cycloadducts were established by NMR correlations to anti-4r and anti-4t, whose structures were determined by single-crystal X-ray analysis
(Fig. 1). ${ }^{11}$ The NMR correlations were based not on chemical shifts, which were less reliable, but on the multiplicities of the ring protons. In particular, the diastereotopic protons on C-4 of the ring appear as two double doublets in the major, anti, isoxazoline, and often (but not always) as one doublet in the minor, syn isoxazoline (see Experimental section). The multiplicities are clearly governed by the relative sizes of different coupling constants, which, in turn, depend on the conformation of the molecule. It is, therefore, not unreasonable that the relative stereochemistry should be reflected in the coupling constants of the ring protons.

In every case, the anti-cycloadduct was the major product. This is consistent with the transition state models of Houk and co-workers (Scheme 3). ${ }^{12}$ As other groups have observed, ${ }^{13}$ the ground-state conformations of the anti-isoxazolines 4 r and 4 t , determined by X-ray analysis, closely resemble the favoured transition-state geometry calculated by Houk. These transitionstate models also account for the general observation that the nitrile oxide substituent R^{2} has little effect on the stereoselectivity of nitrile oxide cycloadditions. ${ }^{14}$ Increasing the steric bulk of the allylic substituent R^{1} on the alkene would be expected from these models to improve the stereoselectivity, since a larger alkyl group should show a stronger preference for the 'inside' position over the 'outside' one. Neither of these trends is shown by the data in Table 1. Increasing the size of the allylic substituent \mathbf{R}^{1} in alkenes 2 from methyl through ethyl and propyl to isobutyl usually reduced the selectivity of the cycloadditions slightly, whereas changing the nitrile oxide substituent often had more effect on the selectivity than changing the allylic substituent. We cannot explain these observations. We assume that the very bulky diphenylphosphinoyl substituent can only occupy the position opposite to the developing ring in Houk's transition state, leaving the \mathbf{R}^{1} group and the allylic hydrogen to fill the 'inside' and 'outside' positions. A branched allylic substituent such as isopropyl or phenyl is probably too bulky to occupy either of these positions: hence the unreactivity of these alkenes.

The isoxazolines $\mathbf{4}$ and 5 proved unexpectedly resistant to reduction by a variety of reducing agents, including sodium borohydride, DIBAL, alane, lithium aluminium hydride, $\mathrm{Na}\left(\mathrm{MeOCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{AlH}_{2}$ (Red-Al), sodium in ethanol, and hydrogenation over Raney nickel, palladium, rhodium, or

Table 2 Results of reductions using NaBH_{4} and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$

4,5-Dihydroisoxazole 4 or 5	Amino alcohols 6 or 7	$\%$ Yield of 6 or 7	Product ratio ${ }^{\text {a.b }}$
4 or 5b	6 or 7a	90.5	60:40
4 or 5b	6 or 7a	- ${ }^{\text {c }}$	50:50 ${ }^{\text {d }}$
4 or 5 e	6 or 7b	76	71:29
4 or 5e	6 or 7b	- ${ }^{\text {c }}$	55:45 ${ }^{\text {d }}$
4h	6 c	84	55:45
5h	7c	86	66:34
4k	6d	85	82:18
4k	6d	$-^{\text {c }}$	83:17 ${ }^{\text {e }}$
4k	6d	- ${ }^{\text {c }}$	67:33 ${ }^{\text {e }}$
5k	7d	84	67:33
4 r	6 e	94	83:17
$4 u$	6 f	64	71:29
5 u	7 f	89	67:33

${ }^{a}$ Reactions performed at $-30^{\circ} \mathrm{C}$ unless otherwise stated. ${ }^{b}$ Ratios of anti,anti-6 to anti,syn-6 or syn,anti-7 to syn,syn-7. ${ }^{c}$ Yield not measured.
${ }^{d}$ Reaction performed at room temp. ${ }^{e}$ Reaction performed at $-78{ }^{\circ} \mathrm{C}$.
platinum oxide. Reduction of 4 and 5 to the amino alcohols 6 and 7, respectively, was achieved cleanly and in high yield by using sodium borohydride with either $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ or Co $\mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} .{ }^{15}$ At room temperature the reaction was barely stereoselective, but moderate selectivities could be obtained with the nickel system at $-30^{\circ} \mathrm{C}$ (see Table 2). Reducing the temperature to $-78^{\circ} \mathrm{C}$ had almost no further effect on the stereoselectivity, but did introduce a significant induction period for the reaction. This induction period was observed with the cobalt system even at $-20^{\circ} \mathrm{C}$, making the nickel system preferable. Although other transition metal salts, notably TiCl_{4}, gave better selectivity, the extent of reduction was very low ($<12 \%$) unless either Ni^{11} or Co^{11} was used. Sodium borohydride alone was totally ineffective.

Separation of the diastereoisomeric reduction products was considerably harder than separation of the diastereoisomeric cycloadducts 4 and 5, and total separation was achieved in only one case: anti,anti-6d and anti,syn-6d were completely separated by flash column chromatography. Since the diastereoisomeric amino alcohols anti, anti-6 and anti,syn-6 give the same homoallylic amines 8 after elimination (see below), their separation was not important, and was, therefore, not attempted in many cases. Neither anti,anti-6d nor anti,syn-6d formed crystals suitable for X-ray analysis, but their relative stereochemistries were investigated by NOE studies. Both NMR coupling constants and, to a lesser extent, IR stretching frequencies support the suggestion that these 1,3-amino alcohols adopt a cyclic, hydrogen-bonded conformation (Scheme 4). It has been suggested ${ }^{16}$ that in view of the strong hydrogen bonding potential of the phosphine oxide oxygen, a

Scheme 4

13
Scheme 5
pseudo-decalin structure such as 13 (for anti,anti-6d) might be more appropriate. This is not consistent with the observed NOEs between OCH and PCH , however. Based on the monocyclic conformation, the NOE data shown in Scheme 4 suggest that the major reduction product was anti,anti-6d, and the minor product anti,syn-6d. These assignments are tentative, however, and related NOE studies on the amino alcohols $6 f$ provided no support for them. If correct, they imply that the major product anti, anti-6d is formed by reduction from the more hindered face of the ring: the hydride is delivered to the face bearing the diphenylphosphinoylalkyl group. This presumably occurs by co-ordination of the reducing agent to the phosphine oxide, but the structure of the reducing agent in these systems is not known. ${ }^{17}$

Stereospecific elimination of diphenylphosphinic acid from the amino alcohols 6 and 7 proceeded as expected under our usual conditions of sodium hydride in N, N-dimethylformamide (DMF). ${ }^{18}$ The homoallylic amine products 8 and 9 were best isolated as their hydrochloride salts, although these tended to decompose on attempted recrystallisation. The configuration of the alkene products is decided by the relative stereochemistry of the chiral centres bearing phosphorus and oxygen in the amino alcohols 6 and 7. These chiral centres were formed in the nitrile oxide cycloaddition, and the syn and anti diastereoisomers immediately separated, so that $E-8$ and $Z-9$ were formed quite separately. The stereochemistry of the third centre was unimportant in these cases, since in the products 8 and 9 it was the only chiral centre. Thus, both anti,anti- and anti,syn-isomers of the amino alcohols 6 give the same E alkenes 8 , while both syn,anti- and syn,syn-isomers of the amino alcohols 7 give the same Z alkenes 9 (Scheme 6). Since the major products of the cycloaddition had anti stereochemistry, the E alkenes were the more readily available by this route.

In summary, we have developed a new route, outlined in Scheme 1, to the homoallylic amines 8 and 9 of defined geometry. The route leads directly to unprotected primary amines, and the E and Z alkenes are produced in different reactions, avoiding the need for isomer separation.

Scheme 6 Reagents and conditions: i, (a) $\mathrm{NaH}, \mathrm{DMF} ;$ (b) $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}: \mathrm{R}=\mathrm{H}, 28-45 \% ; \mathrm{R} \neq \mathrm{H}, 73-81 \%$

Experimental

Column chromatography was carried out at slightly greater than atmospheric pressure using Merck Kieselgel 60 (230-400 mesh). High performance liquid chromatography was performed using a Dynamax prepacked silica column (21.4 mm i.d. $\times 25 \mathrm{~cm}$), with a Gilson model 303 pump operating at 10 ml $\min ^{-1}$ and a Cecil Instruments CE 212A u.v. detection system measuring the absorbance at 254 nm . Thin layer chromatography (TLC) was carried out on commercially available pre-coated plates (Merck silica Kieselgel $60 \mathrm{~F}_{254}$). All solvents were distilled before use. Tetrahydrofuran (THF) was freshly distilled from potassium using benzophenone radical as an indicator. Dry diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) was dried by distillation from calcium hydride. Dimethylformamide (DMF) was dried with, and stored over, activated molecular sieves ($4 \AA$). RT stands for room temperature.
M.p.s were measured on a Reichart hot-stage microscope and are uncorrected. IR spectra were recorded on a Perkin-Elmer 297 grating spectrophotometer. ${ }^{1}$ H NMR spectra were recorded on a Varian EM $390(90 \mathrm{MHz})$ continuous wave spectrometer or on Bruker WP $80(80 \mathrm{MHz})$, WM $250(250 \mathrm{MHz})$ and WM $400(400 \mathrm{MHz})$ Fourier transform spectrometers. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 250 MHz unless otherwise stated. ${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker WM 400 (100 MHz) spectrometer. Chemical shifts are quoted in parts per million relative to tetramethylsilane ($\delta 0.00 \mathrm{ppm}$) or chloroform ($\delta 7.25$ ppm) for ${ }^{1} \mathrm{H}$ spectra, and relative to chloroform ($\delta 77.0 \mathrm{ppm}$) for ${ }^{13} \mathrm{C}$ spectra. J Values are given in Hz . Mass spectra were recorded on an AEI Kratos MS30 machine using a DS503 data system for high resolution analysis. Microanalyses were carried out using Carlo Erba 1106 or Perkin-Elmer 240 automatic analysers.

Hex-1-en-3-yldiphenylphosphine Oxide 2d.-Chlorodiphenylphosphine ($8.1 \mathrm{~cm}^{3}, 45 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(80 \mathrm{~cm}^{3}\right)$ was added slowly to a stirred solution of hex-2-en-1-ol ($5.3 \mathrm{~cm}^{3}, 45 \mathrm{mmol}$) and pyridine ($3.6 \mathrm{~cm}^{3}, 45 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(60 \mathrm{~cm}^{3}\right)$ under Ar at $0^{\circ} \mathrm{C}$, and the mixture stirred at RT for 1 h . The mixture was filtered under Ar , and the $\mathrm{Et}_{2} \mathrm{O}$ removed under reduced pressure of Ar. Toluene $\left(40 \mathrm{~cm}^{3}\right)$ was added to the residue and the solution heated to reflux under Ar for 18 h . The toluene was removed under reduced pressure and the residue purified by column chromatography on SiO_{2}, eluting with $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the impure phosphine oxide. This was recrystallised from EtOAc-hexane to give the phosphine oxide 2d ($5.992 \mathrm{~g}, 47 \%$) as needles, m.p. $105-109{ }^{\circ} \mathrm{C}$ (Found: \mathbf{M}^{+}, 284.1327. $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{OP}$ requires $M, 284.1330$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$ $1630(\mathrm{C}=\mathrm{C}), 995$ and $920\left(=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.83(3 \mathrm{H}, \mathrm{t}, J 7.2$, Мe), 1.14-1.28 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}\right)$, $1.41-1.54(1 \mathrm{H}, \mathrm{m}$, $\left.\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}\right), 1.59-1.71(2 \mathrm{H}, \mathrm{m}, \mathrm{PCHCH})_{2}\right), 2.95-3.08(1 \mathrm{H}, \mathrm{m}$, PCH), $4.98\left(1 \mathrm{H}\right.$, ddd, $\left.J 0.8,3.5,17.0, \mathrm{CH}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 5.12(1 \mathrm{H}$, ddd, $\left.J 1.4,3.5,10.2, \mathrm{CH}=\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right)$, $5.60-5.77(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 7.38-7.55\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right)$ and $7.70-7.86(4 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{P}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.5(\mathrm{Me}), 20.7$ (d, J 13.2, $\mathrm{CH}_{2} \mathrm{Me}$), 28.85
($\mathrm{CH}_{2} \mathrm{CHP}$), 44.9 (d, J 69.0, PCH), 119.9, 120.1, 128.1, 128.25, 128.4, 128.55, 131.1, 131.2, 131.3, 131.4, 131.5, 131.6, 132.4, 132.9 and $133.0 ; m / z 284\left(\mathrm{M}^{+}, 15 \%\right), 242\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6}, 8\right), 201$ $\left(\mathrm{Ph}_{2} \mathrm{PO}, 100\right), 83\left(\mathrm{M}-\mathrm{Ph}_{2} \mathrm{PO}, 18\right)$ and $77(\mathrm{Ph}, 20)$.

5-Methylhex-1-en-3-yldiphenylphosphine Oxide 2e.-In the same way, chlorodiphenylphosphine ($6.3 \mathrm{~cm}^{3}, 35 \mathrm{mmol}$) and 5 -methylhex-2-en-1-ol ($4.0 \mathrm{~g}, 35 \mathrm{mmol}$) gave the phosphine oxide 2e ($7.92 \mathrm{~g}, 76 \%$) as needles, m.p. ${ }^{153-155}{ }^{\circ} \mathrm{C}$ (Found: M^{+}, 298.1490. $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{OP}$ requires $M, 298.1486$); R_{F} (EtOAchexane, 3: 1) 0.34; $v_{\max } / \mathrm{cm}^{-1} 3100-2800(\mathrm{C}-\mathrm{H}), 1635$ (C=C), 1600 $(\mathrm{Ph}), 1440(\mathrm{P}-\mathrm{Ph})$ and $1165(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.80(3 \mathrm{H}, \mathrm{d}, J 6.5$, $\left.\mathrm{C} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.85\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right), 1.33(1 \mathrm{H}, \mathrm{dtd}, J 2.8$, 9.0 and $\left.11.8, \mathrm{PC}-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.80-1.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CHCH}_{\mathrm{A}} H_{\mathrm{B}}\right)$, 3.11 ($1 \mathrm{H}, \mathrm{dq}, J 2.4$ and 9.7 , PCH), 4.96 (1 H , ddd, $J 0.8,4.6$ and $17.0, \mathrm{CH}=\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}$), $5.11(1 \mathrm{H}$, ddd, $J 1.3,3.8$ and 10.0 , $\left.\mathrm{CH}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 5.68\left(1 \mathrm{H}, \mathrm{dtd}, J 5.3,9.8\right.$ and $\left.17.0, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 7.39-7.53 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$) and 7.70-7.85 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 20.4\left(\mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 23.6\left(\mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right), 25.3\left(\mathrm{~d}, \mathrm{~J}^{2} 12\right.$, $\mathrm{CH}), 35.5\left(\mathrm{CH}_{2}\right), 43.3(\mathrm{~d}, \mathrm{~J} 68, \mathrm{PCH}), 120.0\left(\mathrm{~d}, J 12, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 128.2, 128.3, 128.5, 128.6, 131.1, 131.2, 131.4, 131.6, 132.0 (d, J 90, ipso-C), 132.8 and 132.9; $m / z 298\left(\mathrm{M}^{+}, 8 \%\right), 255\left(\mathrm{M}^{+}-\mathrm{Pr}, 4\right)$, $242\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{8}, 10\right), 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 48\right)$ and $201\left(\mathrm{Ph}_{2} \mathrm{PO}, 100\right)$.

4-Methylpent-1-en-3-yldiphenylphosphine Oxide 2f.-In the same way, chlorodiphenylphosphine ($0.90 \mathrm{~cm}^{3}, 5.0 \mathrm{mmol}$) and 4-methylpent-2-en-1-ol ($0.50 \mathrm{~g}, 5.0 \mathrm{mmol}$) gave the phosphine oxide $\mathbf{2 f}$ as needles, m.p. (from EtOAc-hexane) $164-165^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 284.1343 . \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{OP}$ requires M, 284.1338); R_{F} (EtOAc-hexane, 1:1) 0.13; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 2940(\mathrm{CH}), 1720$ $(\mathrm{C}=\mathrm{C}), 1430(\mathrm{P}-\mathrm{Ph})$ and $1140(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.91(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $6.7, \mathrm{CH} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$), $1.03\left(3 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CHMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 2.21(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Me}_{2} \mathrm{CH}\right), 2.88$ (1 H , ddd, $J 2.6,8.3$ and $10.7, \mathrm{PCH}$), $4.95(1 \mathrm{H}$, ddd, $J 1.5,4.0$ and $17.0, \mathrm{CH}=\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}$), $5.16(1 \mathrm{H}, \mathrm{td}, J 2.1$ and $10.2, \mathrm{CH}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), $5.91(1 \mathrm{H}$, dtd, $J 6.4,10.3$ and 16.9 , $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 7.36-7.54\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and $7.71-7.88(4 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 18.6$ (Me), 22.9 (d, J $13, C \mathrm{HMe}_{2}$), 27.4 (Me), 51.1 (d, J 69, PCH), 121.6 (d, J 13, $\mathrm{CH}=\mathrm{CH}_{2}$), 127.9, 128.0, 128.7, 128.8, 129.7, 129.8, 130.7, 130.8, 131.1, 131.3, 131.4, 131.5, $132.8(\mathrm{~d}, J 96.4 \mathrm{~Hz}$, ipso-C) and $133.0(\mathrm{~d}, J 93.9$, ipso-C); $m / z 284\left(\mathrm{M}^{+}, 8 \%\right), 241\left(\mathrm{M}^{+}-\mathrm{Pr}\right), 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 50\right)$, $201\left(\mathrm{Ph}_{2} \mathrm{PO}, 100\right)$ and 77 (Ph, 17).

1-Cyclopentylprop-2-enyldiphenylphosphine Oxide 2g.-In the same way, chlorodiphenylphosphine ($1.2 \mathrm{~cm}^{3}, 6.8 \mathrm{mmol}$) and 3 -cyclopentylprop-2-en-1-ol ($0.85 \mathrm{~g}, 6.8 \mathrm{mmol}$) gave the phosphine oxide $2 \mathrm{~g}(613 \mathrm{mg}, 29 \%)$ as needles, m.p. $162-164^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 310.1511 . \mathrm{C}_{20} \mathrm{H}_{23}$ OP requires $M, 310.1486$); R_{F} (EtOAc) 0.42; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 3070$ (aryl CH), 3000-2800 $(\mathrm{CH}), 1600(\mathrm{Ph}), 1435(\mathrm{P}-\mathrm{Ph})$, and $1175(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.15$ $(1 \mathrm{H}, \mathrm{m}), 1.20-1.63(6 \mathrm{H}, \mathrm{m}), 1.73(1 \mathrm{H}, \mathrm{m}), 2.28[1 \mathrm{H}$, br septet, J ca. 7, $\left.\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}\right], 3.07(1 \mathrm{H}, \mathrm{dt}, J 5.9$ and $9.5, \mathrm{PCH}), 4.94(1 \mathrm{H}$, ddd, $J 1.3,4.4$ and $\left.17.1, \mathrm{CH}=\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right) 5.10(1 \mathrm{H}$, ddd, $J 1.6,2.8$ and $\left.10.2, \mathrm{CH}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right) 5.82(1 \mathrm{H}$, dtd, $J 5.9,10.5$ and 17.0 ,
$\mathrm{CH}=\mathrm{CH}_{2}$), 7.38-7.50 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$) and 7.73-7.88 (4 H, m, $\mathrm{Ph}_{2} \mathrm{PO}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right.$) 24.7, 24.9, 29.6 (d, $J 5$), 31.8 (d, $J 8$), 38.4 $\left[\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}\right], 49.4(\mathrm{~d}, J 68, \mathrm{PCH}), 120.6\left(\mathrm{~d}, J 12, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 128.1, 128.2, 128.4, 128.5,130.9, 131.0, 131.2, 131.3, 131.4, 131.6, 131.6, 132.6 (d, 95, ipso-C), and 133.3 (d, J 92, ipso-C); m/z 310 $\left(\mathrm{M}^{+}, 8 \%\right), 242\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{5}, 17\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 72\right), 201$ ($\mathrm{Ph}_{2} \mathrm{PO}, 100$) and $77(\mathrm{Ph}, 42)$.

Other alkenyldiphenylphosphine oxides were prepared in the same way.

Methyl 5-Hydroxyiminopentanoate.-A solution of hydroxylamine hydrochloride ($1.60 \mathrm{~g}, 23.1 \mathrm{mmol}$) and sodium acetate $(1.89 \mathrm{~g}, 23.1 \mathrm{mmol})$ in water $\left(20 \mathrm{~cm}^{3}\right)$ was added to a stirred solution of methyl 5 -oxopentanoate ($1.0 \mathrm{~g}, 7.7 \mathrm{mmol}$) in ethanol ($7 \mathrm{~cm}^{3}$). The reaction mixture was stirred at room temperature for 24 h , poured into brine ($20 \mathrm{~cm}^{3}$) and extracted with ether ($3 \times 50 \mathrm{~cm}^{3}$). The combined organic extracts were washed with brine ($50 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed under reduced pressure to give the imino ester (previously prepared ${ }^{19}$ by the nitration of methoxycyclopentane) as a pale yellow oil ($1.05 \mathrm{~g}, 94 \%$), $v_{\text {max }} / \mathrm{cm}^{-1}$ (film) $3350 \mathrm{br}(\mathrm{OH}), 1730 \mathrm{~s}$ $(\mathrm{C}=\mathrm{O})$ and $1650(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.74-2.09(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}$ of both isomers), $2.25(2 \mathrm{H}$, dt, $J 7.3,5.7$, $\mathrm{CH}_{2} \mathrm{CHN}$ of cis isomer), 2.33-2.80 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHN}$ of trans isomer and $\mathrm{CH}_{2} \mathrm{CO}$ of both isomers), $3.65(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of trans isomer), $3.67(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of cis isomer), $6.71(1 \mathrm{H}, \mathrm{t}, J 5.7, \mathrm{CHN}$ of cis isomer), $7.40(1 \mathrm{H}, \mathrm{t}, J 6.0, \mathrm{CHN}$ of trans isomer) and 7.5 ($2 \mathrm{H}, \mathrm{brs}, \mathrm{OH}$ of both isomers); $m / z 129(\mathrm{M}-\mathrm{O}, 8 \%), 128(\mathrm{M}-$ $\mathrm{OH}, 40), 114(\mathrm{M}-\mathrm{NOH}$ and $\mathrm{M}-\mathrm{OMe} 40), 113(\mathrm{M}-$ $\mathrm{MeOH}, 100)$ and $96(\mathrm{M}-\mathrm{MeOH}, \mathrm{OH}, 92)$. Other oximes were commercially available, or were prepared in the same way.

Methods used to carry out 1,3-Dipolar Cycloadditions.Method A. Aqueous sodium hypochlorite ($2 \mathrm{~mol} \mathrm{dm}^{-3} ; 1.2$ equiv.) was added dropwise to a vigorously stirred solution of the oxime and the alkene 2 ($0.5-1$ equiv.) in dichloromethane ($20 \mathrm{~cm}^{3} / \mathrm{mmol}$ oxime) at $0^{\circ} \mathrm{C}$. The solution was stirred at room temperature for the desired period and poured into water. The organic layer was removed and the aqueous layer extracted with dichloromethane. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed under reduced pressure to give the crude product.

Method B. NaOCl ($2 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution; 2.4 equiv.) was added to a solution of the alkene 2 (1 equiv.) and the oxime (2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{~cm}^{3}$ per mmol of alkene) and the mixture sonicated in an ultrasonic washing-up tank until the reaction was complete by TLC, more oxime (2 equiv.) and NaOCl (2.4 equiv.) being added at intervals. The mixture was poured into water and separated, and the aqueous layer extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude reduction product, which was purified by column chromatography on SiO_{2}.

Method C. Chlorine gas was passed through a stirred solution of the oxime in ether or chloroform (depending on solubility) at $-60^{\circ} \mathrm{C}$. After 15 min the blue solution turned blue-green and was evaporated to dryness under reduced pressure at $-5^{\circ} \mathrm{C}$ to give the imidoyl chloride. Triethylamine (1 equiv.) in chloroform or ether was added dropwise to a stirred solution of the imidoyl chloride and the alkene 2 ($1-4$ equiv.) in ether or chloroform at $-10^{\circ} \mathrm{C}$. The solution was stirred at room temperature for 1-2 days and then evaporated under reduced pressure. Water was added and the solution was extracted. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and then evaporated under reduced pressure to give the crude product.
Method D. An equimolar mixture of the alkene 2, the oxime, and chloramine-T trihydrate in $\mathrm{EtOH}\left(15 \mathrm{~cm}^{3}\right.$ per mmol of
reagents) was heated to reflux for a suitable period. At intervals, the mixture was cooled and more oxime and chloramine-T added. After the desired reflux period, the mixture was concentrated under reduced pressure and extracted with EtOAc. The extract was filtered, and the solvent removed under reduced pressure to give the crude reaction product, which was purified by column chromatography on SiO_{2}.

Method E. A mixture of the oxime and 2 equiv. of NBS in dry DMF ($10 \mathrm{~cm}^{3} / \mathrm{mmol}$ of oxime) was stirred at $-20^{\circ} \mathrm{C}$ for 1 h and then at $0^{\circ} \mathrm{C}$ for 30 min . The mixture was then diluted with ether ($5 \mathrm{~cm}^{3} \mathrm{mmol}^{-1}$), and a solution of the alkene 2 and 1 equiv. of triethylamine in ether was added slowly. The reaction was stirred at room temperature for 48 h , poured into water and extracted with dichloromethane. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed under reduced pressure to give the crude product.

Method F. Triethylamine ($0.11 \mathrm{~cm}^{3}, 0.8 \mathrm{mmol}$) in THF (2 cm^{3}) was added dropwise in portions over 3 h to a stirred solution of the alkene $2(0.39 \mathrm{mmol})$ and ethyl chlorooximidoacetate ($121 \mathrm{mg}, 0.8 \mathrm{mmol}$) in THF ($5 \mathrm{~cm}^{3}$) and the solution stirred for 8 d , with more oxime and triethylamine added after 3.5 d . Water was added, and the mixture extracted into EtOAc ($2 \times 15 \mathrm{~cm}^{3}$). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product.

Method G. A solution of the primary nitroalkane and triethylamine ($5-10$ drops) in toluene ($2 \mathrm{~cm}^{3} \mathrm{mmol}^{-1}$ nitroalkane) was added dropwise to a solution of phenyl isocyanate (2 equiv.) and the alkene 2 ($1-2$ equiv.) in toluene. After being stirred at room temperature for 1 h , the solution was heated at $80^{\circ} \mathrm{C}$ for 24 h . If TLC indicated the presence of alkene 2 a further addition of phenyl isocyanate and nitroalkane was made and heating was continued for a further 24 h . The reaction mixture was allowed to cool, diluted with water and the organic layer was separated. The aqueous layer was extracted with dichloromethane and the combined organic extracts were washed with $2 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed under reduced pressure to give the crude product.

Method H. As method C, but the chloraldoxime and the alkene were heated together in toluene at reflux, in the absence of triethylamine.

5-Diphenylphosphinoylmethyl-3-ethyl-4,5-dihydroisoxazole 4 or 5a.-By Method C. Propanal oxime ($230 \mathrm{mg}, 3.1 \mathrm{mmol}$) and the phosphine oxide $2 \mathrm{a}(0.5 \mathrm{~g}, 2.1 \mathrm{mmol})$ gave a pale yellow solid. This was purified by flash column chromatography on silica (75 g) eluting with ethyl acetate. The first compound to be eluted was the phosphine oxide $\mathbf{2 a}(0.15 \mathrm{~g}, 30 \%$ recovery). The second compound to be eluted was the dihydroisoxazole ($\mathbf{4}$ or 5a) ($430 \mathrm{mg}, 67 \%$), as needles, m.p. $132-136^{\circ} \mathrm{C}$ (from EtOAc) (Found: $\mathrm{M}^{+}, 313.1234 . \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{P}$ requires $M, 313.1231$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1585(\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.12(3 \mathrm{H}, \mathrm{t}, J 7.5$, $\mathrm{Me}), 2.33\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right)$, $2.56(1 \mathrm{H}, \mathrm{dt}, J 14.5,10.2$, $\left.\mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.86\left(1 \mathrm{H}\right.$, ddd, $\left.J 3.7,9.0,14.5, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.99(1 \mathrm{H}$, dd, $J 8.2,17.3,4-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), $3.07\left(1 \mathrm{H}, \mathrm{dd}, J 9.4,17.3,4-\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right.$), 4.67-4.79 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}), 7.42-7.58\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right)$ and $7.67-$ $7.81\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right) ; m / z 313\left(\mathrm{M}^{+}, 2 \%\right), 258(\mathrm{M}-\mathrm{EtCN}, 10)$, 257 (M - Et, HCN, 8), 243 (M - $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{CN}, 18$), $216\left[\mathrm{Ph}_{2}-\right.$ $\mathrm{P}(\mathrm{O}) \mathrm{Me}, 42], 215\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}, 100\right] 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 27\right)$ and 77 (Ph, 12).
By Method H. Propanal oxime ($300 \mathrm{mg}, 4.1 \mathrm{mmol}$) was converted as before into the chloroaldoxime. This and the phosphine oxide $2 \mathrm{a}(0.50 \mathrm{~g}, 2.1 \mathrm{mmol})$ were heated together in toluene at reflux to give a brown solid. Flash column chromatography of this on silica (60 g) eluting with ethyl acetate gave the phosphine oxide $\mathbf{2 a}$ ($140 \mathrm{mg}, 28 \%$ recovery) and the dihydroisoxazole ($\mathbf{4}$ or 5 a) $\mathbf{(~} \mathbf{4 6 0} \mathrm{mg}, 71 \%$), as a white solid.

5-Diphenylphosphinoylmethyl-3-propyl-4,5-dihydroisoxazole 4 or 5b.-By Method A. The phosphine oxide 2a ($0.243 \mathrm{~g}, 1.0$ $\mathrm{mmol})$, butyraldehyde oxime ($0.176 \mathrm{~g}, 2.0 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40$ cm^{3}), and aqueous $\mathrm{NaOCl}\left(2 \mathrm{~mol} \mathrm{dm}^{-3} ; 1.2 \mathrm{~cm}^{3}, 2.4 \mathrm{mmol}\right.$) were stirred for 10 d , with more oxime and NaOCl added after 4 d . The crude mixture was purified by column chromatography on SiO_{2}, eluting with EtOAc-hexane (3:1) then EtOAc, to give the dihydroisoxazole $\mathbf{4}$ or $\mathbf{5 b}(0.315 \mathrm{~g}, 96 \%)$ as needles, m.p. 111$113^{\circ} \mathrm{C}$ (EtOAc-hexane) (Found: C, 69.6; H, 6.8; N, 4.4; P, $9.5 \% ; \mathrm{M}^{+}-\operatorname{PrCN}, 258.0804 . \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{P}$ requires C, 69.7; $\mathrm{H}, 6.8 ; \mathrm{N}, 4.3 ; \mathrm{P}, 9.5 \%$; $\mathrm{M}-\mathrm{PrCN}, 258.0810$); $R_{\mathrm{F}}(\mathrm{EtOAc}-$ hexane, 3:1) 0.14; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3000-2800(\mathrm{CH}), 1595$ $(\mathrm{Ph}), 1355(\mathrm{P}-\mathrm{Ph}), 1185(\mathrm{P}=\mathrm{O})$ and $1120(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.92$ ($3 \mathrm{H}, \mathrm{t}, J 7.4$, Me), 1.54 (2 H , sextet, $J 7.4,3^{\prime \prime}-\mathrm{H}_{2}$), $2.28(2 \mathrm{H}, \mathrm{t}, J$ $\left.7.4,3^{\prime}-\mathrm{H}_{2}\right), 2.55\left(1 \mathrm{H}, \mathrm{dt}, J 10.2\right.$ and $\left.14.3, \mathrm{PC} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.86(1 \mathrm{H}$, ddd, J 3.7, 9.1 , and 14.6, $\mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}$), $2.97(1 \mathrm{H}$, dd, $J 8.0$ and 17.4, $4-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), $3.05\left(1 \mathrm{H}, \mathrm{dd}, J 9.4\right.$ and $17.4,4-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}$), $4.72(1$ $\mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 7.42-7.58\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and $7.67-7.80(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 13.7(\mathrm{Me}), 19.6,29.6,35.4\left(\mathrm{~d}, J 67, \mathrm{PCH}_{2}\right)$, 42.8, 74.8 (C-5), 128.7, 128.8, 128.8, 128.9, 130.4, 130.4, 130.8, 130.9, 131.8 (d, J 99, ipso-C), 132.1, 133.3 (d, J100, ipso-C) and 159.8 (C=N); $m / z 258\left(\mathrm{M}^{+}-\mathrm{PrCN}, 2.3 \%\right), 243\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})-\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}, 2.5\right], 215\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}, 100\right], 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 25\right)$ and 77 (Ph, 34).

5-Diphenylphosphinoylmethyl-3-hexyl-4,5-dihydroisoxazole 4 or 5c.-By Method A. The phosphine oxide $\mathbf{2 a}$ (246 mg , 1 mmol), heptanal oxime ($259 \mathrm{mg}, 2 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right.$), and aqueous $\mathrm{NaOCl}\left(2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 1.2 \mathrm{~cm}^{3}, 2.4 \mathrm{mmol}\right)$ were stirred together for 10 d , with more oxime and NaOCl added after 2 and 7 d . The residue was purified by column chromatography on SiO_{2}, eluting with EtOAc , to give the dihydroisoxazole 4 or 5 c ($356 \mathrm{mg}, 95 \%$) as needles, m.p. $66-68^{\circ} \mathrm{C}$ (EtOAc-hexane) (Found: C, 71.7; H, 7.95; N, 3.75; P, 8.5\%; M ${ }^{+}$- Bu, 312.1155. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{2}$ P requires C, 71.5; $\mathrm{H}, 7.6 ; \mathrm{N}, 3.8 ; \mathrm{P}, 8.4 \% ; \mathrm{M}-\mathrm{Bu}$, 312.1154); R_{F} (EtOAc-hexane, 3:1) $0.28 ; v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$ 3100-2800 (C-H), 1675 (C=N), 1595 (Ph), 1440 (P-Ph), 1170 $(\mathrm{P}=\mathrm{O})$, and $1125(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.85(3 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{Me}), 1.25-$ $1.32\left[6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Me}\right], 1.50\left(2 \mathrm{H}\right.$, br quintet, J ca. $\left.6.5,3^{\prime \prime}-\mathrm{H}_{2}\right)$, $2.29\left(2 \mathrm{H}, \mathrm{t}, J 7.5,3^{\prime}-\mathrm{H}_{2}\right), 2.55(1 \mathrm{H}, \mathrm{td}, J 10.1$ and 14.5 , $\left.\mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.86\left(1 \mathrm{H}, \mathrm{ddd}, J 3.7,9.1\right.$ and 14.5, $\left.\mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.96(1$ $\mathrm{H}, \mathrm{dd}, J 7.8$ and $\left.17.2,4-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.06(1 \mathrm{H}$, dd, $J 9.5$ and 17.2 , 4$\left.\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.92(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}), 7.42-7.58\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and 7.67-7.80 (4 H, m, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.0(\mathrm{Me}), 22.4,26.2$, 27.7, 28.9, 31.4, 35.4 (d, J 67, PCH_{2}), 42.9, 74.8 (OC), 128.7, 128.8, 128.9, 128.9, 130.4, 130.4, 130.8, 130.9, 131.7 (d, J ca. 100 , ipso C), 132.1, $133.2(\mathrm{~d}, J 100$, ipso C$)$ and $160.0(\mathrm{C}=\mathrm{N})$; $m / z 312\left(\mathrm{M}^{+}-\mathrm{Bu}, 0.35 \%\right), 299\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{10}, 0.5\right), 258$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{6}, 2.7\right], 216\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Me}, 56\right], 215\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}\right.$, 100], $202\left(\mathrm{Ph}_{2} \mathrm{POH}, 6\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 22\right)$ and $77(\mathrm{Ph}, 16)$.

5-Diphenylphosphinoylmethyl-3-undecyl-4,5-dihydroisoxazole 4 or 5d.-By Method E. Dodecanal oxime ($7.30 \mathrm{~g}, 36.6 \mathrm{mmol}$), the phosphine oxide $2 \mathrm{a}(4.43 \mathrm{~g}, 18.3 \mathrm{mmol})$ and NBS $(13.0 \mathrm{~g}$, 73.2 mmol) gave a brown gum. Flash column chromatography on silica (1000 g) eluting with ether gave the dihydroisoxazole 4 or $5 \mathrm{~d}(4.0 \mathrm{~g}, 50 \%)$ as needles, m.p. $64-66^{\circ} \mathrm{C}$ (from $\mathrm{EtOAc}-$ hexane) (Found: $\mathrm{M}^{+}, 439.2601 . \mathrm{C}_{27} \mathrm{H}_{38} \mathrm{NO}_{2} \mathrm{P}$ requires M, 439.2640); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1590 \mathrm{w}(\mathrm{C}=\mathrm{N}), 1430(\mathrm{P}-\mathrm{Ph})$, and $1175(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.86(3 \mathrm{H}, \mathrm{t}, J 6.4, \mathrm{Me}), 1.13-1.33[16 \mathrm{H}$, $\left.\mathrm{m},\left(\mathrm{CH}_{2}\right)_{8} \mathrm{Me}\right], 1.47-1.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 2.29(2 \mathrm{H}, \mathrm{t}, J$ $7.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), $2.55\left(1 \mathrm{H}, \mathrm{dt}, J 10.2,14.5, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right.$), 2.86 $\left(1 \mathrm{H}, \mathrm{ddd}, J 3.7,9.0,14.5, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.98(1 \mathrm{H}, \mathrm{dd}, J 7.8,17.1$, $\left.4-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.05\left(1 \mathrm{H}, \mathrm{dd}, J 9.3,17.1,4-\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.62-4.83(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHO}), 7.43-7.54\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right)$ and $7.67-7.81(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{P}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.0(\mathrm{Me}), 22.6,26.2,27.6,29.1,29.2,29.4$, $29.5,29.55,31.8,35.35$ (d, J 68, PCH_{2}), 74.7 (CHO), 128.7, $128.75,128.8,128.9,130.3,130.4,130.8,130.9,131.1,132.05$,
133.6 and $160.0(\mathrm{C}=\mathrm{N}) ; m / z 440(\mathrm{M}+\mathrm{H}, 5 \%), 439\left(\mathrm{M}^{+}, 4\right), 438$ (M-H,3), $312\left(\mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{19}, 8\right), 299\left(\mathrm{M}-\mathrm{C}_{10} \mathrm{H}_{20}, 12\right)$, $258\left(\mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{CN}, 20\right), 243$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}, 25\right], 216$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Me}, 85\right], 215\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}, 100\right]$ and $201\left(\mathrm{Ph}_{2} \mathrm{PO}\right.$, 30).

5-Diphenylphosphinoylmethyl-3-phenyl-4,5-dihydroisoxazole 4 or 5e.-By Method A. The phosphine oxide 2a ($242 \mathrm{mg}, 1$ $\mathrm{mmol})$, benzaldehyde oxime ($0.17 \mathrm{~cm}^{3}, 2 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 cm^{3}) and aqueous $\mathrm{NaOCl}\left(2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 1.5 \mathrm{~cm}^{3}, 3 \mathrm{mmol}\right.$) were stirred together for 10 d , with more oxime and NaOCl added after 4 and 6 d . The residue was purified by column chromatography on SiO_{2}, eluting with EtOAc to give the dihydroisoxazole 4 or 5e, which recrystallised from EtOAchexane as needles ($199 \mathrm{mg}, 55 \%$), m.p. $145-147^{\circ} \mathrm{C}$ (Found: C, 73.2; $\mathrm{H}, 5.7 ; \mathrm{N}, 4.0 ; \mathrm{P}, 8.7 \% ; \mathrm{M}^{+}, 361.1248 . \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 73.1 ; \mathrm{H}, 5.6 ; \mathrm{N}, 3.9 ; \mathrm{P}, 8.6 \% ; \mathrm{M}, 361.1232$); R_{F} (EtOAc-hexane, 9:1) 0.26; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right.$) 3100-3000 (aryl CH), 3000-2800 (CH), 1730 (C=N), 1600 (Ph), 1440 (P-Ph), $1185(\mathrm{P}=\mathrm{O})$ and $1120(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.67(1 \mathrm{H}, \mathrm{dt}, J 10.3$ and 14.3, $\mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$) $2.95(1 \mathrm{H}$, ddd, $J 3.7,9.1$ and 14.6, $\left.\mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.42\left(1 \mathrm{H}, \mathrm{dd}, J 8.2\right.$ and $\left.16.5,4-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.50(1 \mathrm{H}, \mathrm{dd}$, $J 9.4$ and $16.5,4-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}$), $4.95(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH})$ and $7.34-7.85$ (15 $\mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhCN$) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 35.5\left(\mathrm{~d}, J 68, \mathrm{PCH}_{2}\right), 40.7$ (C-4), 76.1 (OC), 126.7, 128.6, 128.7, 128.8, 128.9, 128.9, 129.2 $\left(\mathrm{N}=\mathrm{C}-C_{\text {ary }}\right), 130.2,130.3,130.4,130.5(\mathrm{~d}, J 110$, ipso C$), 130.8$, $130.9,131.1,132.1,132.2,133.1(\mathrm{~d}, J 100$, ipso C) and 157.3 $(\mathrm{C}=\mathrm{N}) ; m / z 361\left(\mathrm{M}^{+}, 1 \%\right), 258\left(\mathrm{M}^{+}-\mathrm{PhCN}, 0.2\right), 216$ [$\left.\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Me}, 63\right], 215\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}, 100\right)\right] 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 3\right)$, 201 ($\mathrm{Ph}_{2} \mathrm{PO}, 20$) and 77 ($\mathrm{Ph}, 27$).
By Method B. Aqueous $\mathrm{NaOCl}\left(2 \mathrm{~mol} \mathrm{dm}^{-3} ; 1.2 \mathrm{~cm}^{3}, 2.4\right.$ mmol) was added to a solution of the phosphine oxide 2a (242 $\mathrm{mg}, 1 \mathrm{mmol}$) and benzaldehyde oxime ($242 \mathrm{mg}, c a .2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the mixture sonicated for 40 h over 8 d . After work-up, the residue was purified by column chromatography on SiO_{2}, eluting with EtOAc to give the dihydroisoxazole 4 or 5 e as needles ($224 \mathrm{mg}, 62 \%$).
(1'R*,5R*)-5-(1'-Diphenylphosphinoylethyl)-3-methyl-4,5-dihydroisoxazole $\mathbf{4 f}$.-By method A. The phosphine oxide $\mathbf{2 b}$ (251 $\mathrm{mg}, 1 \mathrm{mmol}$), acetaldehyde oxime ($\left.1.2 \mathrm{~cm}^{3}, 20 \mathrm{mmol}\right), \mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ cm^{3}), and aqueous $\mathrm{NaOCl}\left(2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 1.5 \mathrm{~cm}^{3}, 3 \mathrm{mmol}\right.$) were stirred together for 20 d , with more NaOCl added after 5,10 and 15 d . The residue was purified by column chromatography on SiO_{2}, eluting with 10% hexane in EtOAc to give recovered phosphine oxide $\mathbf{2 b}$ ($225 \mathrm{mg}, 88 \%$) and the anti-dihydroisoxazole $4 \mathrm{f}(30 \mathrm{mg}, 10 \%)$ as needles, m.p. $181-183^{\circ} \mathrm{C}$ (Found: C, $69.2 ; \mathrm{H}$, 6.5; N, 4.3; P, 9.7\%; $\mathbf{M}^{+}-\mathrm{MeCN}, 272.0988 . \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 69.0 ; \mathrm{H}, 6.4 ; \mathrm{N}, 4.5 ; \mathrm{P}, 9.9 \% ; \mathrm{M}-\mathrm{MeCN}$, 272.0966); R_{F} (EtOAc-hexane, 9:1) $0.17 ; v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right)$ 3100-3040 (aryl CH), 3000-2800 (CH), 1725 (C=N), 1600 (Ph), $1435(\mathrm{P}-\mathrm{Ph}), 1190(\mathrm{P}=\mathrm{O})$ and $1115(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.14(3 \mathrm{H}$, dd, $J 7.1$ and 15.7, PCMe), 1.93 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}$), 2.87 (1 H , dd, J 11.2 and $\left.18.2,4-H_{A} H_{B}\right), 2.9(1 \mathrm{H}$, partially obscured $\mathrm{m}, \mathrm{PCH})$, $3.24\left(1 \mathrm{H}, \mathrm{dd}, J 8.4\right.$ and $\left.18.0,4-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.70(1 \mathrm{H}$, tdd, $J 3.5,8.3$ and $11.0, \mathrm{OCH}), 7.44-7.55\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and $7.75-7.85(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 5.7(\mathrm{Me}), 12.9(\mathrm{Me}), 35.3$ (d, J68, PCH), 39.3 (C-4), 78.2 (d, J4, OCH), 128.7, 128.8, 128.9, 130.5, 130.6, 130.7, 131.6 (d, J 98 ipso C), 131.8 (d, J 94 ipso C), 131.8, 131.9 and $156.2(\mathrm{C}=\mathrm{N})$; $m / z \quad 272\left(\mathrm{M}^{+}-\mathrm{MeCN}, 2 \%\right), 230$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}, 100\right], 229\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 56\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 79\right)$, $201\left(\mathrm{Ph}_{2} \mathrm{PO}, 50\right)$ and $77(\mathrm{Ph}, 48)$.
($\left.1^{\prime} \mathrm{R}^{*}, 5 \mathrm{R}^{*}\right)$ - and ($\left.1^{\prime} \mathrm{R}^{*}, 5 \mathrm{~S}^{*}\right)$-5-(1'-Diphenylphosphinoylethyl)-3-ethyl-4,5-dihydroisoxazoles $\mathbf{4 g}$ and 5 g .-By method C. Propanal oxime ($0.43 \mathrm{~g}, 5.9 \mathrm{mmol}$) and the phosphine oxide $\mathbf{2 b}$ (1.0 $\mathrm{g}, 3.9 \mathrm{mmol}$) gave an off-white solid which was purified by flash column chromatography on silica (150 g) eluting with ethyl
acetate. The first compound to be eluted was 3,4-diethylfurazan 2 -oxide ($140 \mathrm{mg}, 33 \%$), as a yellow oil (Found: $\mathrm{M}^{+}, 142.0732$. $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $M, 142.0742$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1600$ and 955 (lit., ${ }^{20} 1600,1142,1037,955$ and $\left.843 \mathrm{~cm}^{-1}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $1.20\left(3 \mathrm{H}, \mathrm{t}, J 7.6,3-\mathrm{CCH}_{2} \mathrm{Me}\right), 1.33\left(3 \mathrm{H}, \mathrm{t}, J 7.5,4-\mathrm{CCH}_{2} \mathrm{Me}\right)$, $2.54\left(2 \mathrm{H}, \mathrm{q}, J 7.6,3-\mathrm{CCH}_{2}\right)$ and $2.66\left(2 \mathrm{H}, \mathrm{q}, J 7.5,4-\mathrm{CCH}_{2}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 9.6\left(4-\mathrm{CCH}_{2} \mathrm{Me}\right), 10.8\left(3-\mathrm{CCH}_{2} \mathrm{Me}\right), 15.8\left(4-\mathrm{CCH}_{2}\right)$, $19.2\left(3-\mathrm{CCH}_{2}\right), 116.7(4-\mathrm{C})$ and $158.7(\mathrm{C}=\mathrm{N}) ; m / z 142\left(\mathrm{M}^{+}\right.$, 20%), $112(\mathrm{M}-\mathrm{NO}, 17), 81\left(\mathrm{M}-\mathrm{N}_{2} \mathrm{O}_{2}, \mathrm{H}, 35\right)$ and 67 (EtCCN or $\mathrm{EtCCCH}_{2}, 100$). The second compound to be eluted was the phosphine oxide $\mathbf{2 b}$ ($370 \mathrm{mg}, 37 \%$ recovery). The third compound to be eluted was the anti-4,5-dihydroisoxazole $\mathbf{4 g}$ ($580 \mathrm{mg}, 45 \%$), as needles, m.p. $137-140^{\circ} \mathrm{C}$ (from EtOAchexane) (Found: M^{+}, 327.1388. $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{P}$ requires 327.1387); $v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1595(\mathrm{C}=\mathrm{N})$ and $1118 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $1.09\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right), 1.10(3 \mathrm{H}$, dd, J7.1, $15.8, \mathrm{CHMe}$), $2.28\left(2 \mathrm{H}, \mathrm{q}, J .7 .5, \mathrm{CH}_{2} \mathrm{Me}\right), 2.85(1 \mathrm{H}, \mathrm{dd}, J 11.0,18.0$, $\left.4-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.94(1 \mathrm{H}, \mathrm{ddq}, J 7.3,3.5,7.1, \mathrm{PCH}), 3.23(1 \mathrm{H}, \mathrm{dd}, J$ $\left.8.2,18.0,4-\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.67(1 \mathrm{H}$, dddd, $J 3.5,8.2,11.0,14.5, \mathrm{CHO})$, $7.41-7.47\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right)$ and $7.73-7.83\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 5.65(\mathrm{~d}, \mathrm{~J} 2, \mathrm{PCHMe}), 10.7\left(\mathrm{CH}_{2} \mathrm{Me}\right), 21.0\left(\mathrm{CH}_{2} \mathrm{Me}\right)$, $35.4(\mathrm{~d}, J 68 . \mathrm{PCH}), 37.5\left(\mathrm{CHCH}_{2}\right), 77.9(\mathrm{~d}, J 5, \mathrm{CHO}), 128.3$, $128.4,128.6,128.7,128.8,130.4,130.5,130.6,130.8,130.9,131.1$, $131.3,131.69,131.71,131.78,131.81,132.1,132.3$ and 160.6 (C=N); $m /=327\left(\mathrm{M}^{+}, 5 \%\right), 310(\mathrm{M}-\mathrm{OH}, 5), 272(\mathrm{M}-\mathrm{EtCN}$, 60), 257 (M - Me, EtCN, 35), 230 [$\left.\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}, 100\right)\right], 229$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 50\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 65\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 60\right)$ and $77(\mathrm{Ph}, 20)$. The fourth compound to be eluted was the syn-4,5dihydroisoxazole $5 \mathrm{~g}\left(111 \mathrm{mg}, 9 \%\right.$), as needles, m.p. $114-116^{\circ} \mathrm{C}$ (from EtOAc-hexane); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1595(\mathrm{C}=\mathrm{N})$ and 1120; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.03\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right), 1.20(3 \mathrm{H}, \mathrm{dd}, J 7.2$, 16.7. $\mathrm{CH} M e$), $2.22\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right), 2.70(1 \mathrm{H}, \mathrm{ddq}, J 7.3$, $11.1,7.2, \mathrm{PCH}), 2.82\left(2 \mathrm{H}, \mathrm{d}, J 9.4, \mathrm{CH}_{2} \mathrm{CO}\right), 4.68(1 \mathrm{H}, \mathrm{ddt}, J 7.3$, 8.2, 9.4, CHO), $7.44-7.56\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right)$ and $7.75-7.86(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{P}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 10.6,11.05,21.0\left(\mathrm{CH}_{2} \mathrm{Me}\right), 38.3(\mathrm{~d}, J 69$, $\mathrm{PCH}), 41.1\left(\mathrm{~d}, J 2.5, \mathrm{CHCH}_{2}\right), 79.3$ (CHO), 128.4, 128.47, 128.5, $128.6,130.45,130.9,131.0,131.2,131.3,131.4,131.6,131.7,131.8$, 132.5 and $160.6(\mathrm{C}=\mathrm{N}) ; m / z 230\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}, 100\right], 229$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 65\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 95\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 60\right)$ and 77 ($\mathrm{Ph}, 50$).
($\left.1^{\prime} \mathrm{R}^{*}, 5 \mathrm{R}^{*}\right)$ - and ($\left.1^{\prime} \mathrm{R}^{*}, 5 \mathrm{~S}^{*}\right)$-5-(1'-Diphenylphosphinoylethyl)-3-propyl-4,5-dihydroisoxazoles $\mathbf{4 h}$ and 5 h .-By method B. The phosphine oxide $\mathbf{2 b}$ ($257 \mathrm{mg}, 1 \mathrm{mmol}$), butyraldehyde oxime ($0.17 \mathrm{~cm}^{3}, 2 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ and aqueous $\mathrm{NaOCl}(2$ $\mathrm{mol} \mathrm{dm}{ }^{3} ; 1.5 \mathrm{~cm}^{3}, 3 \mathrm{mmol}$) were sonicated together for 11 h over 2 d . The residue was purified by column chromatography on SiO_{2}, eluting with EtOAc. The first compound isolated was the anti-4,5-dihydroisoxazole $\mathbf{4 h}(239 \mathrm{mg}, 70 \%)$ as needles, m.p. $139-141^{\circ} \mathrm{C}$ (Found: C, 70.4; H, 7.1; N, 4.0; P, 9.1\%; $\mathrm{M}^{+}$$\operatorname{PrCN}, 272.0387 . \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 70.4 ; \mathrm{H}, 7.1 ; \mathrm{N}, 4.1$; $\mathrm{P}, 9.1 \%$; $\mathrm{M}-\mathrm{PrCN}, 272.0366$); $R_{\mathrm{F}}($ EtOAc-hexane, $3: 1) 0.24$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 2920(\mathrm{CH}), 1660(\mathrm{C}=\mathrm{N}), 1580(\mathrm{Ph}), 1450(\mathrm{P}-$ $\mathrm{Ph}), 1300(\mathrm{P}=\mathrm{O})$ and $1130(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.91(3 \mathrm{H}, \mathrm{t}, J 7.4$, $\mathrm{Me} \mathrm{CH}_{2}$) , $1.13(3 \mathrm{H}$, dd, $J 7.1$ and $15.8, \mathrm{MeCH}), 1.55(2 \mathrm{H}$, sextet, $\left.J 7.4, \mathrm{MeCH}_{2}\right), 2.26\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{EtCH}_{2}\right), 2.86(1 \mathrm{H}, \mathrm{dd}, J 11.0$ and $\left.17.9,4-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.9(1 \mathrm{H}$, partially obscured $\mathrm{m}, \mathrm{PCH}), 3.23(1$ H , dd, $J 7.8$ and $\left.17.9,4-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.69(1 \mathrm{H}$, tdd $, J 3.5,8.1$ and 11.2 , $\mathrm{OCH}), 7.43-7.55\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and $7.74-7.85(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 5.7\left(\mathrm{~d}, J\right.$ 2, CHMe), $13.7\left(\mathrm{CH}_{2} \mathrm{Me}\right), 19.6$ $\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 35.5(\mathrm{~d}, \mathrm{~J} 68, \mathrm{PCH}), 37.8\left(\mathrm{CH}_{2}\right), 77.9(\mathrm{OC})$, 128.7, 128.9, 129.0, 130.5, 130.6, 130.7, 131.7 (d, J 100, ipso C), 131.8,131.9, 132.0(d, J90, ipso C) and $159.7(\mathrm{C}=\mathrm{N}) ; m / z 272\left(\mathrm{M}^{+}\right.$ $-\mathrm{PrCN}, 1 \%), 257\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}, 0.5\right], 230$ [$\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}$, 100], 229 [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 65\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 88\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}\right.$, $60)$ and $77(\mathrm{Ph}, 76)$. The second product to be isolated was the syn-4,5-dihydroisoxazole 5 h ($48 \mathrm{mg}, 14 \%$), which was, unfortunately, not characterised, but was identified by its ${ }^{1} \mathrm{H}$

NMR; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.9\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{2} \mathrm{Me}\right), 1.22(3 \mathrm{H}, \mathrm{dd}, J 7.2$ and 16.7, CHMe$), 1.47\left(2 \mathrm{H}\right.$, sextet, $\left.J 7.5, \mathrm{MeCH}_{2}\right), 2.21(2 \mathrm{H}, \mathrm{t}, J$ $\left.7.0,3^{\prime}-\mathrm{H}_{2}\right), 2.71(1 \mathrm{H}$, quintet of doublets, $J 7.2$ and $11.2, \mathrm{PCH}$), $2.83\left(2 \mathrm{H}, \mathrm{d}, J 9.4,4-\mathrm{H}_{2}\right), 4.70(1 \mathrm{H}$, quintet, $J 8.0, \mathrm{OCH}), 7.4-7.6$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$) and 7.7-7.9 (4 H, m, $\mathrm{Ph}_{2} \mathrm{PO}$).

By method D. The phosphine oxide $\mathbf{2 b}$ ($130 \mathrm{mg}, 0.5 \mathrm{mmol}$), butyraldehyde oxime ($43 \mathrm{mg}, 0.5 \mathrm{mmol}$), and chloramine-T (141 $\mathrm{mg}, 0.6 \mathrm{mmol})$ were dissolved in $\mathrm{EtOH}(10 \mathrm{ml})$ and heated at reflux for 6 d , with more reagents added after 3 d . Work-up gave a residue which was purified by column chromatography on SiO_{2}, eluting with 25% hexane in EtOAc, to give the anti-4,5dihydroisoxazole $\mathbf{4 h}(47 \mathrm{mg}, \mathbf{2 7} \%$), the phosphine oxide $\mathbf{2 b}$ (71 $\mathrm{mg}, 55 \%$) and the $s y n-4,5$-dihydroisoxazole 5 h ($25 \mathrm{mg}, 14 \%$), which were all recognised by their ${ }^{1} \mathrm{H}$ NMR spectra.
(1'R*,5R*)- and (1'R*,5S*)-5-(1'-Diphenylphosphinoylethyl)-3-hexyl-4,5-dihydroisoxazoles $\mathbf{4 i}$ and $5 \mathbf{i}$.-By method A. The phosphine oxide $\mathbf{2 b}(132 \mathrm{mg}, 0.52 \mathrm{mmol})$, heptanal oxime (130 $\mathrm{mg}, 1 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ and aqueous $\mathrm{NaOCl}(2 \mathrm{~mol}$ $\mathrm{dm}^{-3} ; 0.8 \mathrm{~cm}^{3}, 1.6 \mathrm{mmol}$) were stirred together for 7 d , with more oxime and NaOCl added after 6 d . The residue was purified by column chromatography on SiO_{2}, eluting with EtOAc-hexane (3:1). The first compound isolated was the anti-4,5-dihydroisoxazole $4 \mathrm{i}(152 \mathrm{mg}, 77 \%$) as needles, m.p. (EtOAc-hexane) $112-114^{\circ} \mathrm{C}$ (Found: C, $72.2 ; \mathrm{H}, 8.1 ; \mathrm{N}, 3.6 ; \mathrm{P}, 7.9 \% ; \mathrm{M}^{+}-$ $\mathrm{C}_{5} \mathrm{H}_{10}$, 313.1238. $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 72.0 ; \mathrm{H}, 7.9 ; \mathrm{N}$, $\left.3.65 ; \mathrm{P}, 8.1 \% ; \mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{10}, 313.1232\right) ; R_{\mathrm{F}}(\mathrm{EtOAc}$-hexane, $3: 1)$ $0.31, v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHBr}_{3}\right) 3000-2800(\mathrm{CH}), 1626(\mathrm{C}=\mathrm{N}), 1591$ $(\mathrm{Ph}), 1438(\mathrm{P}-\mathrm{Ph}), 1200(\mathrm{P}=\mathrm{O})$ and $1071(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.85$ ($3 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{CH}_{2} \mathrm{Me}$), $1.14(3 \mathrm{H}$, dd, $J 7.1$ and $15.8, \mathrm{CHMe}$), $1.21-1.38\left[6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Me}\right], 1.51\left(2 \mathrm{H}\right.$, quintet, $\left.J 7.5,3^{\prime \prime}-\mathrm{H}_{2}\right)$, $2.27\left(2 \mathrm{H}, \mathrm{t}, J 7.5,3^{\prime}-\mathrm{H}_{2}\right), 2.87(1 \mathrm{H}, \mathrm{dd}, J 11.0$ and 17.9 , 4$\left.H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.9(1 \mathrm{H}$, partially obscured m, PCH), $3.2(1 \mathrm{H}$, dd, $J 8.2$ and $\left.18.0,4-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.69(1 \mathrm{H}$, tdd, $J 3.4,8.1$ and $11.1, \mathrm{OCH})$, 7.44-7.55 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$) and $7.75-7.86\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 5.7(\mathrm{~d}, J 3, \mathrm{CH} M e), 14.0\left(\mathrm{CH}_{2} \mathrm{Me}\right), 22.4\left(\mathrm{CH}_{2}\right), 26.2$ $\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 35.5(\mathrm{~d}, \mathrm{~J} 68, \mathrm{PCH})$, $37.8\left(\mathrm{CH}_{2}\right), 77.9(\mathrm{~d}, J 5, \mathrm{OC}), 128.7,128.8,129.0,130.6,130.6$, 130.7, 131.7 (d, J98, ipso C), 131.8, 131.9, 131.9 (d, J95, ipso C) and $159.9(\mathrm{C}=\mathrm{N}) ; \quad m / z \quad 313\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{10}, \quad 0.6 \%\right), 272$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}, 2.4\right] \quad 257 \quad\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}, 1.4\right], 230$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}, 100\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 38\right)$ and $201\left(\mathrm{Ph}_{2} \mathrm{PO}, 32\right)$. The second compound isolated was the syn-4,5-dihydroisoxazole $5 \mathbf{i}$ $\left(60 \mathrm{mg}, 30 \%\right.$) as needles, m.p. (EtOAc-hexane) $131-132{ }^{\circ} \mathrm{C}$ (Found: C, $71.8 ; \mathrm{H}, 7.85 ; \mathrm{N}, 3.5 ; \mathrm{P}, 7.85 \% ; \mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{10}$, 313.1228. $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 72.0 ; \mathrm{H}, 7.9 ; \mathrm{N}, 3.65 ; \mathrm{P}$, $8.1 \% ; M-\mathrm{C}_{5} \mathrm{H}_{10}, 313.1232$); $R_{\mathrm{F}}(3: 1: \mathrm{EtOAc}:$ hexane) 0.15 , $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 3060($ aryl CH), $3000-2800(\mathrm{C}-\mathrm{H}), 1670$ $(\mathrm{C}=\mathrm{N}), 1590(\mathrm{Ph}), 1435(\mathrm{P}-\mathrm{Ph}), 1180(\mathrm{P}=\mathrm{O})$ and $1115(\mathrm{C}-\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.86\left(3 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{CH}_{2} \mathrm{Me}\right), 1.22(3 \mathrm{H}, \mathrm{dd}, J 7.2$ and 16.6, CHMe), $1.1-1.3$ [$\left.6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Me}\right], 1.4(2 \mathrm{H}$, poorly resolved quintet, $\left.J c a .7,3^{\prime \prime}-\mathrm{H}_{2}\right), 2.22\left(2 \mathrm{H}, \mathrm{t}, J 7.5,3^{\prime}-\mathrm{H}_{2}\right), 2.70$ (1 H , quintuplet d, $J 7.3$ and $11.3, \mathrm{PCH}), 2.83(2 \mathrm{H}, \mathrm{d}, J 9.5,4-$ $\left.\mathrm{H}_{2}\right), 4.69(1 \mathrm{H}$, br quintet, $J c a .8 .5, \mathrm{OCH}), 7.43-7.57(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$ and $7.74-7.85\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 11.4(\mathrm{Me})$, $14.0(\mathrm{Me}), 22.5\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 31.4$ $\left(\mathrm{CH}_{2}\right), 38.5(\mathrm{~d}, J 68, \mathrm{PCH}), 41.1\left(\mathrm{CH}_{2}\right), 79.4(\mathrm{OC}), 128.5,128.6$, 128.7, 128.7, 131.0 (d, J 92, ipso C), 131.1, 131.2, 131.4, 131.5, $131.9,131.9,132.2(\mathrm{~d}, J 96$, ipso C$)$ and $160.0(\mathrm{C}=\mathrm{N}) ; \mathrm{m} / \mathrm{z}$ $313\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{10}, 0.5 \%\right), 272\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}, 2.4\right], 258$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}, 1.0\right], 257 \quad\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}, 2\right], 230$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}, 100\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 40\right)$ and $201\left(\mathrm{Ph}_{2} \mathrm{PO}, 34\right)$.
(1'R*,5R*)- and (1'R*,5S*)-5-(1'-Diphenylphosphinoylethyl)-3-undecyl-4,5-dihydroisoxazoles $\mathbf{4 j}$ and $5 \mathbf{j}$.-By method E. Dodecanal oxime ($1.75 \mathrm{~g}, 17.6 \mathrm{mmol}$) and the phosphine oxide $\mathbf{2 b}(1.5 \mathrm{~g}, 5.9 \mathrm{mmol})$ gave an oil which was purified by flash column chromatography on silica (400 g) eluting with ether.

The first compound to be eluted was the anti-4,5-dihydroisoxazole $4 \mathrm{j}\left(1.12 \mathrm{~g}, 42 \%\right.$), as needles, m.p. $103-106^{\circ} \mathrm{C}$ (from EtOAchexane) (Found: $\mathrm{C}, 74.1 ; \mathrm{H}, 8.95 ; \mathrm{N}, 3.0 ; \mathrm{P}, 6.6 \% ; \mathrm{M}^{+}$, 453.2788. $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 74.1 ; \mathrm{H}, 8.9 ; \mathrm{N}, 3.0 ; \mathrm{P}$, $6.8 \% ; M, 453.2792), v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) \quad 1595(\mathrm{C}=\mathrm{N}), 1435$ $(\mathrm{P}-\mathrm{Ph})$ and $1185(\mathrm{P}=\mathrm{O}), \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.86\left(3 \mathrm{H}, \mathrm{t}, J 6.4, \mathrm{CH}_{2} \mathrm{Me}\right)$, 1.13 (3 H, dd, J 7.1, 15.8, CHMe), 1.18-1.27 [16H, m, $\left.\left(\mathrm{CH}_{2}\right)_{8} \mathrm{Me}\right], 1.48-1.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 2.28(2 \mathrm{H}, \mathrm{t}, J$ $7.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), $2.86\left(1 \mathrm{H}, \mathrm{dd}, J 11.0,18.0,4-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.92-$ $3.02(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 3.23\left(1 \mathrm{H}, \mathrm{dd}, J 8.3,18.0,4-\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.65-$ $4.72(1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}), 7.44-7.55\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right)$ and $7.75-7.84$ (4 $\left.\mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right) ; m / z 453\left(\mathrm{M}^{+}, 8 \%\right), 452(\mathrm{M}-\mathrm{H}, 8), 326$ (M$\left.\mathrm{C}_{9} \mathrm{H}_{19}, 8\right), 313\left(\mathrm{M}-\mathrm{C}_{10} \mathrm{H}_{20}, 20\right), 272\left(\mathrm{M}-\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{CN}, 40\right)$, 230 [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}, 100\right], 229$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 20\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}\right.$, 30), $201\left(\mathrm{Ph}_{2} \mathrm{PO}, 27\right)$ and $77(\mathrm{Ph}, 10)$. The second fraction to be eluted was found by NMR to contain the phosphine oxide $\mathbf{2 b}$ and the dihydroisoxazole 5 j in a ratio of $2: 1$. Separation by HPLC eluting with dichloromethane-methanol ($50: 1$) gave $\mathbf{2 b}$ ($450 \mathrm{mg}, 30 \%$ recovery) and the syn-4,5-dihydroisoxazole $5 \mathbf{j}$ (280 $\mathrm{mg}, 11 \%$), as needles, m.p. $98-99^{\circ} \mathrm{C}$ (from EtOAc-hexane) (Found: C, 74.35; H, 8.8; N, 3.1; P, 7.1\%; $\mathbf{M}^{+}, 453.2815$. $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 74.1 ; \mathrm{H}, 8.9 ; \mathrm{N}, 3.0 ; \mathrm{P}, 6.8 \% ; M$, 453.2792); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 1605(\mathrm{C}=\mathrm{N}), 1440(\mathrm{P}-\mathrm{Ph})$ and $1175(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.87\left(3 \mathrm{H}, \mathrm{t}, J 6.3, \mathrm{CH}_{2} \mathrm{Me}\right), 1.18-1.33$ [$\left.16 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{8} \mathrm{Me}\right], 1.23(3 \mathrm{H}, \mathrm{dd}, J 7.2,16.6, \mathrm{CHMe}), 1.40-$ 1.47 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), $2.22\left(2 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right.$), 2.69-2.73 (1 H, d quintet, $J 11,7, \mathrm{PCH}), 2.84(2 \mathrm{H}, \mathrm{d}, J 9.4,4-$ $\left.\mathrm{CH}_{2}\right), 4.66-4.73(1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}), 7.44-7.56\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right)$ and $7.75-7.85\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right) ; m / z 454(\mathrm{M}+\mathrm{H}, 5 \%), 453\left(\mathrm{M}^{+}, 10\right)$, 452 (M - H, 8), 438 ($\mathrm{M}-\mathrm{Me}, 3$), $436(\mathrm{M}-\mathrm{OH}, 5), 435$ $\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 10\right), 326\left(\mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{19}, 10\right), 313\left(\mathrm{M}-\mathrm{C}_{10} \mathrm{H}_{20}, 30\right)$, $272\left(\mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{CN}, 50\right), 257\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}(\mathrm{Me}) \mathrm{CO}, 40\right], 253$ $\left(\mathrm{M}+\mathrm{H}, \quad-\mathrm{Ph}_{2} \mathrm{PO}, 40\right), \quad 252\left(\mathrm{M}-\mathrm{Ph}_{2} \mathrm{PO}, 38\right), 230$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}, 85\right], 229\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 100\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 60\right)$, 201 ($\mathrm{Ph}_{2} \mathrm{PO}$, 55) and 77 ($\mathrm{Ph}, 15$).

By method A. Dodecanal oxime $(0.47 \mathrm{~g}, 2.3 \mathrm{mmol})$ and the phosphine oxide $2 \mathbf{2 b}(0.5 \mathrm{~g}, 2.0 \mathrm{mmol})$ gave a white solid. ${ }^{1} \mathrm{H}$ NMR showed that the ratio of the two diastereoisomers was 4:1. Flash column chromatography on silica (100 g) eluting with ether gave the anti-4,5-dihydroisoxazole $4 \mathrm{j}(470 \mathrm{mg}, 53 \%$).
(1'R*,5R*)- and (1'R*,5S*)-5-(1'-Diphenylphosphinoylethyl)-3-phenyl-4,5-dihydroisoxazoles $\mathbf{4 k}$ and $5 \mathbf{k}$.-By method B. The phosphine oxide $2 \mathrm{~b} 5.005 \mathrm{~g}, 19.5 \mathrm{mmol}$), benzaldehyde oxime ($2.6 \mathrm{~cm}^{3}, 30 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(150 \mathrm{~cm}^{3}\right)$, and aqueous $\mathrm{NaOCl}(2$ $\mathrm{mol} \mathrm{dm}{ }^{-3} ; 25 \mathrm{~cm}^{3}, 50 \mathrm{mmol}$) were sonicated for 11 h . The residue was purified by column chromatography on SiO_{2}, eluting with EtOAc-hexane $(85: 15)$ then EtOAc. The first compound isolated was the anti-dihydroisoxazole $4 \mathbf{k}(5.718 \mathrm{~g}, 78 \%)$ as needles, m.p. (from EtOAc-hexane) $228-230^{\circ} \mathrm{C}$ (Found: C, 73.3; $\mathrm{H}, 5.9 ; \mathrm{N}, 4.0 ; \mathrm{P}, 8.25 . \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 73.6 ; \mathrm{H}$, $5.9 ; \mathrm{N}, 3.9 ; \mathrm{P}, 8.3 \%) ; R_{\mathrm{F}}(\mathrm{EtOAc}) 0.37 ; v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 3100-$ 3000 (aryl CH), 3000-2800 (CH), $1670(\mathrm{C}=\mathrm{N}), 1590(\mathrm{Ph}), 1435$ $(\mathrm{P}-\mathrm{Ph}), 1190(\mathrm{P}=\mathrm{O})$ and $1110(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.18(3 \mathrm{H}, \mathrm{dd}, J$ 7.1 and $15.8, \mathrm{Me}), 3.06(1 \mathrm{H}$, dqd, $J 3.3,7.1$ and $8.6, \mathrm{PCH}), 3.29$ $\left(1 \mathrm{H}, \mathrm{dd}, J 11.2\right.$ and $\left.17.4,4-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.66(1 \mathrm{H}$, dd, $J 8.7$ and 17.8 , $\left.4-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.89(1 \mathrm{H}$, tdd, $J 3.4,8.6$ and $11.3, \mathrm{OCH}), 7.35-7.57$ $\left(9 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and PhCN$), 7.65-7.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and PhCN$)$ and $7.78-7.90\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and PhCN$)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 5.8(\mathrm{Me}), 35.6(\mathrm{~d}, J 68, \mathrm{PCH}), 35.6\left(\mathrm{CH}_{2}\right), 79.4(\mathrm{~d}, J 5$, OC), 126.8, 127.4, 128.6, 128.7, 128.8, 128.9, 129.0, 129.1, 129.2 $\left(\mathrm{NC}^{\left.-\mathrm{C}_{\text {aryl }}\right), 130.1,130.6,130.7,130.8,131.8(\mathrm{~d}, J 95 \text {, ipso C), 131.9, }}\right.$ 132.0 and $157.4(\mathrm{C}=\mathrm{N}) ; m / z \quad 230 \quad\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}, 18\right], 202$ ($\mathrm{Ph}_{2} \mathrm{POH}, 14$), $201\left(\mathrm{Ph}_{2} \mathrm{PO}, 20\right), 121$ ($\left.\mathrm{PhCH}_{2} \mathrm{NO}, 49\right), 105$ $\left(\mathrm{PhCH}_{2} \mathrm{~N}, 70\right)$ and $77(\mathrm{Ph}, 100)$. The second compound isolated was the syn-4,5-dihydroisoxazole $5 \mathrm{k}(1.120 \mathrm{~g}, 15 \%)$ as needles, m.p. (EtOAc-hexane) $169-170^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 375.1395$. $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{P}$ requires $M, 375.1388$); R_{F} (EtOAc) 0.22 ;
$v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 3100-3000(\operatorname{aryl~CH}), 3000-2800(\mathrm{CH}), 1600$ $(\mathrm{Ph}), 1435(\mathrm{P}-\mathrm{Ph}), 1185(\mathrm{P}=\mathrm{O})$ and $1120(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.29$ (3 H , dd, $J 7.1$ and $16.6, \mathrm{Me}$), $2.82(1 \mathrm{H}$, quintuplet d, $J 7.3$ and $11.3, \mathrm{PCH}), 3.26\left(2 \mathrm{H}, \mathrm{d}, J 9.5,4-\mathrm{H}_{2}\right), 4.92(1 \mathrm{H}$, br quintet, $J c a$. $8, \mathrm{OCH}), 7.32-7.38\left(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and PhCN$), 7.48-7.58(8 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhCN$)$ and $7.78-7.86\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and $\mathrm{PhCN}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 11.1(\mathrm{Me}), 38.5(\mathrm{~d}, J 68, \mathrm{PCH}), 39.2\left(\mathrm{CH}_{2}\right)$, $80.5(\mathrm{OCH}), 126.5,128.5,128.6,128.7,129.7$ (d, J 117, ipso C), 129.9 (NC-C $C_{\text {ary1 }}$), 131.0, 131.1, 131.3, 131.4, 131.8, 132.1 (d, J96, ipso C) and $157.2(\mathrm{C}=\mathrm{N}) ; m / z 375\left(\mathrm{M}^{+}, 0.4 \%\right), 272\left(\mathrm{M}^{+}-\right.$ $\mathrm{PhCN}, 0.4), 230$ [$\mathrm{Ph}_{2}(\mathrm{P}(\mathrm{O}) \mathrm{Et}, 100], 229\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 45\right]$, $202\left(\mathrm{Ph}_{2} \mathrm{POH}, 52\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 32\right)$ and $77(\mathrm{Ph}, 49)$.

By method A. Aqueous $\mathrm{NaOCl}\left(2 \mathrm{~mol} \mathrm{dm}^{-3} ; 1.5 \mathrm{~cm}^{3}, 3 \mathrm{mmol}\right)$ was added to a stirred solution of the phosphine oxide $\mathbf{2 b}$ (215 $\mathrm{mg}, 0.84 \mathrm{mmol}$) and benzaldehyde oxime ($0.15 \mathrm{~cm}^{3}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(10 \mathrm{~cm}^{3}\right)$, and the mixture stirred for 10 d , with more oxime and bleach added after 4 and after 6 d . Work-up gave a residue which was purified by column chromatography on SiO_{2}, eluting with 15% hexane in EtOAc to give the anti-4,5-dihydroisoxazole $4 \mathbf{k}(228 \mathrm{mg}, 72 \%)$ and the syn-4,5-dihydroisoxazole $\mathbf{5 k}(66 \mathrm{mg}$, 21%).
(1'R*,5R*)- and (1'R*,5S*)-5-(1'-Diphenylphosphinoylethyl)-3-ethoxycarbonyl-4,5-dihydroisoxazoles 41 and 51.-By method F. Triethylamine ($0.11 \mathrm{~cm}^{3}, 0.8 \mathrm{mmol}$), the phosphine oxide $\mathbf{2 b}$ $(100 \mathrm{mg}, 0.39 \mathrm{mmol})$, and ethyl chlorooximidoacetate $(121 \mathrm{mg}$, 0.8 mmol) gave an oil which was purified by column chromatography on SiO_{2}, eluting with EtOAc-hexane (3:1). The first fraction isolated contained the 4,5-dihydroisoxazoles 41 and 51 ($64 \mathrm{mg}, 44 \%$) as an 80:20 mixture of diastereoisomers 4] and 51, respectively, as a pale yellow oil which slowly crystallised (Found: $\mathrm{M}^{+}, 371.1281 . \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{P}$ requires $M, 371.1287$); R_{F} (EtOAc-hexane, 3:1) 0.31; $\quad v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) \quad 2970-2780$ $(\mathrm{CH}), 1715(\mathrm{C}=\mathrm{O}), 1590(\mathrm{Ph}), 1460(\mathrm{P}-\mathrm{Ph}), 1185(\mathrm{P}=\mathrm{O})$ and $1115(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.15\left(3 \mathrm{H}_{4}\right.$, dd, $J 7$ and $\left.15.5, \mathrm{MeCH}\right)$, c. $1.2\left(3 \mathrm{H}_{51}\right.$, largely obscured by $\left.41, M e \mathrm{CH}\right), 1.33\left(3 \mathrm{H}_{41}\right.$, $\mathrm{t}, J 7.2, \mathrm{MeCH} 2), 1.39\left(3 \mathrm{H}_{51}, \mathrm{t}, J 7, M e \mathrm{CH}_{2}\right), 2.96-3.11\left(1 \mathrm{H}_{4}\right.$ and $51, \mathrm{~m}, \mathrm{PCH}), 3.15\left(1 \mathrm{H}_{41}\right.$, dd, $J 11.5$ and $\left.18.7,4-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, c. $3.18\left(1 \mathrm{H}_{51}\right.$, dd largely obscured by 41 , smaller $\left.J 7.5,4-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, c. $3.4\left(1 \mathrm{H}_{\mathrm{H}}\right.$, dd partially obscured by 4 l , smaller $\left.J 4,4-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right)$, $3.47\left(1 \mathrm{H}_{41}\right.$, dd, $J 9.3$ and $\left.18.6,4-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.31\left(2 \mathrm{H}_{41}, \mathrm{q}, J 7.2\right.$, $\left.\mathrm{MeCH}_{2}\right), 4.42\left(2 \mathrm{H}_{51}, \mathrm{q}, J 7.2, \mathrm{MeCH}_{2}\right), 4.94\left(1 \mathrm{H}_{41}\right.$ and 51 , 51 obscured by 41, 41 tdd, J 4.0, 9.2 and $11.7, \mathrm{OCH}$), 7.45-7.58 ($6 \mathrm{H}_{41}$ and $51, \mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}$) and 7.68-7.86 (4 H_{41} and $51, \mathrm{~m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 6.0(\mathrm{MeCH} 41), 11.4(\mathrm{MeCH} 51)$, 14.0 ($\mathrm{MeCH}_{2} 51$), 14.1 ($\mathrm{MeCH}_{2} 41$), 28.8 (C-4 5l), 34.3 (C-4 4l), 35.5 (d, J 68, OCH 41), 37.0 (d, J 68, PCH 51), $62.0\left(\mathrm{CH}_{2} \mathrm{Me} 41\right), 62.7$ ($\mathrm{CH}_{2} \mathrm{Me} 5 \mathrm{I}$), 70.8 (C-O 51), 82.3 (d, J 4, C-O 41), 128.6, 128.7, 128.8, 128.9, 129.0, 129.1, 130.6, 130.7, 130.7, 130.8, 130.9, 131.0 , $131.7,131.8,132.1,132.1,152.5(\mathrm{C}=\mathrm{O} 41)$, and $160.2(\mathrm{C}=\mathrm{N} 41)$; $m / z 371\left(\mathrm{M}^{+}, 1.5 \%\right), 298\left(\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{Et}, 27\right), 272\left(\mathrm{M}^{+}-\right.$ $\left.\left.\mathrm{NCCO}_{2} \mathrm{Et}, 6\right), 256\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{4} \mathrm{H}_{7}, 6\right)\right], 230\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}, 100\right]$, $202\left(\mathrm{Ph}_{2} \mathrm{POH}, 86\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 97\right)$ and $77(\mathrm{Ph}, 42)$. The second fraction was the phosphine oxide $2 \mathrm{~b}(63 \mathrm{mg}, 63 \%$, not recrystallised).
(1'R*,5R*)- and (1'R*,5S*)-5-(1'-Diphenylphosphinoylethyl)-3-methoxycarbonylethyl-4,5-dihydroisoxazoles 4 m and 5m.-By method G. Methyl 4-nitrobutyrate ${ }^{21}(0.86 \mathrm{~g}, 5.9 \mathrm{mmol})$, the phosphine oxide $2 \mathrm{~b}(0.5 \mathrm{~g}, 2.0 \mathrm{mmol})$ and phenyl isocyanate $\left(1.74 \mathrm{~g}, 1.6 \mathrm{~cm}^{3}, 14.6 \mathrm{mmol}\right)$ gave a brown gum. Attempted purification by flash column chromatography on silica (200 g) eluting with ethyl acetate-hexane $(2: 1)$ failed to separate the two diastereoisomers. The product mixture was recolumned on silica (20 g) eluting with ethyl acetate. The first product to be eluted was the anti-4,5-dihydroisoxazole 4 m ($460 \mathrm{mg}, 61 \%$), as a gum (Found: $\mathrm{M}-\mathrm{OMe}, 354.1277 . \mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{P}$ requires 354.1259); $v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1725(\mathrm{C}=\mathrm{O}), 1595(\mathrm{C}=\mathrm{N})$, and
$1440(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.12(3 \mathrm{H}, \mathrm{dd}, J 7.1,15.7, \mathrm{CHMe})$, 2.58-2.62 (4 H, m, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.88(1 \mathrm{H}, \mathrm{dd}, J 11.0,17.9,4-$ $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.87-3.05(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 3.25(1 \mathrm{H}, \mathrm{dd}, J 8.3,17.9,4-$ $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.45-7.50\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right)$ and 7.74-7.84 (4 H, m, $\mathrm{Ph}_{2} \mathrm{P}$); m/z 354 ($\mathrm{M}-\mathrm{OMe}, 7 \%$), 230 [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}, 100\right], 229$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CHMe}, 30\right], 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 50\right)$ and $77(\mathrm{Ph}, 20)$. The second compound to be eluted was the syn-4,5-dihydroisoxazole 5 m ($95 \mathrm{mg}, 13 \%$), as a gum (Found: \mathbf{M} OMe, 354.1265. $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{P}$ requires 354.1259); $v_{\text {max }} / \mathrm{cm}^{-1}$ $\left(\mathrm{CHCl}_{3}\right) 1730(\mathrm{C}=\mathrm{O}), 1595(\mathrm{C}=\mathrm{N})$ and $1440(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 1.21 ($3 \mathrm{H}, \mathrm{dd}, J 7.2,16.6, \mathrm{CH} \mathrm{Me}$), 2.49-2.60 (4 H, m, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.61-2.77(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 2.86\left(2 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{CH}_{2} \mathrm{CHO}\right), 3.66$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.72$ (1 H, dq, J 7.5, 9.5, CHO), $7.44-7.57$ ($6 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{P}$) and 7.74-7.85 (4 H, m, $\left.\mathrm{Ph}_{2} \mathrm{P}\right) ; m / z 354(M-\mathrm{OMe}, 7 \%)$, $230\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}, 100\right], 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 5\right)$ and $77(\mathrm{Ph}, 20)$.
($\left.1^{\prime} \mathrm{R}^{*}, 5 \mathrm{R}^{*}\right)$ - and ($\left.1^{\prime} \mathrm{R}^{*}, 5 \mathrm{~S}^{*}\right)$-5-(1^{\prime}-Diphenylphosphinoylethyl)-3-methoxycarbonylpropyl-4,5-dihydroisoxazoles 4n and 5n.-By method A. Methyl 5-hydroxyiminopentanoate (1.35 g, 7.8 $\mathrm{mmol})$ and the phosphine oxide $\mathbf{2 b}(1.0 \mathrm{~g}, 4.0 \mathrm{mmol})$ gave a pale yellow oil which was purified by flash column chromatography on silica $(200 \mathrm{~g})$ eluting with ethyl acetate. The first fraction was the anti-4,5-dihydroisoxazole $4 \mathrm{n}(855 \mathrm{mg}, 55 \%)$, as needles, m.p. $109-110^{\circ} \mathrm{C}$ (from EtOAc) (Found: $\mathrm{M}-\mathrm{OMe}$ 368.1384. $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{P}$ requires 368.1416); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 1735$ $(\mathrm{C}=\mathrm{O}), 1605(\mathrm{C}=\mathrm{N}), 1430(\mathrm{P}-\mathrm{Ph})$ and $1190(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $1.13(3 \mathrm{H}$, dd, $J 7.1,15.7, \mathrm{CHMe}), 1.89(2 \mathrm{H}$, quintet, $J 7.4$, $\mathrm{NCCH}_{2} \mathrm{CH}_{2}$), $2.33\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{NCCH}_{2} \mathrm{CH}_{2}\right.$ or $\mathrm{CH}_{2} \mathrm{CO}_{2}$), $2.34\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{NCCH}_{2} \mathrm{CH}_{2}\right.$ or $\left.\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.87(1 \mathrm{H}, \mathrm{dd}, J$ $\left.10.8,17.8,4-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.86-2.95(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 3.23(1 \mathrm{H}, \mathrm{dd}, J$ $\left.8.0,17.8,4 . \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.65(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.69-4.73(1 \mathrm{H}, \mathrm{m}$, CHO), $7.45-7.55\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right)$ and $7.74-7.85\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right)$; $m / z 368(\mathrm{M}-\mathrm{OMe}, 45 \%), 326\left(\mathrm{M}-\mathrm{OMe}, \mathrm{CO}, \mathrm{CH}_{2}, 15\right), 298$ $\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{CO}_{2} \mathrm{Me}, 3\right), 272\left[\mathrm{M}-\mathrm{NC}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{Me}, 25\right]$, $257\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}, 20\right], 256\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}(\mathrm{Me}) \mathrm{CHCH}_{2}, 25\right]$, 230 [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}, 100\right], 229\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 55\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}\right.$, $35), 201,\left(\mathrm{Ph}_{2} \mathrm{PO}, 35\right)$ and $77(\mathrm{Ph}, 35)$. The second fraction to be eluted contained a mixture of the two diastereoisomers 4 n and $5 n$ in a ratio of $1: 1$ by ${ }^{1} \mathrm{H}$ NMR. This mixture was separated by HPLC eluting with chloroform-methanol $(50: 1)$ to give the anti-4,5-dihydroisoxazole 4 n ($60 \mathrm{mg}, 4 \%$), and the syn-4,5dihydroisoxazole $5 \mathrm{n}(86 \mathrm{mg}, 6 \%)$, as needles, m.p. $133.5-$ $134.5^{\circ} \mathrm{C}$ (from EtOAc) (Found: $M^{+}, 399.1574 . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{P}$ requires $M, 399.1599)$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 1730(\mathrm{C}=\mathrm{O}), 1605$ $(\mathrm{C}=\mathrm{N}), 1430(\mathrm{P}-\mathrm{Ph})$ and $1180(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.22(3 \mathrm{H}, \mathrm{dd}, J$ $7.3,16.5, \mathrm{CHMe}), 1.82\left(2 \mathrm{H}\right.$, br quintet, $\left.J 7, \mathrm{NCCH}_{2} \mathrm{CH}_{2}\right), 2.28$ ($2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{NCCH}_{2} \mathrm{CH}_{2}$ or $\mathrm{CH}_{2} \mathrm{CO}_{2}$), $2.33(2 \mathrm{H}, \mathrm{t}, J 7.1$, $\mathrm{NCCH}_{2} \mathrm{CH}_{2}$ or $\left.\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.69-2.79(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 2.86(2 \mathrm{H}$, $\left.\mathrm{d}, J 9.5,4-\mathrm{CH}_{2}\right), 3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.69-4.73(1 \mathrm{H}, \mathrm{m}, \mathrm{CHO})$, 7.45-7.57 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}$) and $7.75-7.86\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right) ; m / z 400$ $(\mathrm{M}+\mathrm{H}, 7 \%), 399\left(\mathrm{M}^{+}, 4\right), 368(\mathrm{M}-\mathrm{OMe}, 5), 272[\mathrm{M}-\mathrm{NC}-$ $\left.\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{Me}, 2\right], 230\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}, 100\right], 229\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}\right.$, 35], $202\left(\mathrm{Ph}_{2} \mathrm{POH}, 60\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 40\right)$ and $77(\mathrm{Ph}, 30)$.
(1'R*,5R*)- and (1'R*,5S*)-5-(1'-Diphenylphosphinoylpro-pyl)-3-undecyl-4,5-dihydroisoxazoles 40 and 50.-By method A. Dodecanal oxime ($1.50 \mathrm{~g}, 7.5 \mathrm{mmol}$) and the phosphine oxide $\mathbf{2 c}$ $(1.50 \mathrm{~g}, 5.5 \mathrm{mmol})$ gave a yellow oily solid which was purified by flash column chromatography on silica (300 g) eluting with ethyl acetate-dichloromethane ($1: 1$). The first compound to be eluted was the phosphine oxide $\mathbf{2 c}(912 \mathrm{mg}, 61 \%$ recovery $)$. The second fraction to be eluted contained a mixture of the two 4,5dihydroisoxazoles. Separation by HPLC eluting with chloroform-methanol (100:1) gave the anti-4,5-dihydroisoxazole 40 ($434 \mathrm{mg}, 17 \%$), as needles, m.p. $92-94^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, 74.3; H, 9.0; N, 3.2; P, 6.3\%; M^{+}, 467.2915. $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}, 9.05 ; \mathrm{N}, 3.0 ; \mathrm{P}, 6.6 \% ; M$, $467.2953) ; v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 1595(\mathrm{C}=\mathrm{N}), 1430(\mathrm{P}-\mathrm{Ph})$ and
$1190(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.81\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{PCHCH}_{2} \mathrm{Me}\right), 0.86$ [$\left.3 \mathrm{H}, \mathrm{t}, J 6.2,\left(\mathrm{CH}_{2}\right)_{10} \mathrm{Me}\right], 1.2-1.3\left[16 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{8} \mathrm{Me}\right], 1.48-$ 1.54 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), $1.67-1.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCHCH}_{2} \mathrm{Me}\right)$, $2.28\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 2.78-2.89(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}$ and 4$\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.19\left(1 \mathrm{H}, \mathrm{dd}, J 9.4,17.9,4-\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.63-4.71(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHO}), 7.43-7.54\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right)$ and $7.78-7.89(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{P}\right) ; m / z 467\left(\mathrm{M}^{+}, 5 \%\right), 466(\mathrm{M}-\mathrm{H}, 5), 452(\mathrm{M}-\mathrm{Me}$, 2), $450(\mathrm{M}-\mathrm{OH}, 4), 449\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 4\right), 438(\mathrm{M}-\mathrm{Et}, 3), 340$ $\left(\mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{19}, 5\right), 327\left(\mathrm{M}-\mathrm{C}_{10} \mathrm{H}_{20}, 15\right), 312\left(\mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{23}, 8\right)$, 286 (M-C $\left.\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{CN}, 10\right), 266\left(\mathrm{M}-\mathrm{Ph}_{2} \mathrm{PO}, 30\right), 258$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}, \quad 50\right], 244 \quad\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{7}, 100\right], 229$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 90\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 30\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 40\right)$ and 77 ($\mathrm{Ph}, 15$); and the syn 4,5-dihydroisoxazole 50 ($120 \mathrm{mg}, 5 \%$), as needles, m.p. $71-72^{\circ} \mathrm{C}$ (from EtOAc-hexane) (Found: C, 74.4; $\mathrm{H}, 9.3 ; \mathrm{N}, 3.1 ; \mathrm{P}, 6.85 \% ; \mathrm{M}^{+}, 467.2962 . \mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 74.5 ; \mathrm{H}, 9.05 ; \mathrm{N}, 3.0 ; \mathrm{P}, 6.6 \% ; \mathrm{M}, 467.2953) ; v_{\text {max }} / \mathrm{cm}^{-1}$ $\left(\mathrm{CDCl}_{3}\right) 1595(\mathrm{C}=\mathrm{N}), 1430 \quad(\mathrm{P}-\mathrm{Ph})$ and $1185(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.87\left[3 \mathrm{H}, \mathrm{t}, J 6.4,\left(\mathrm{CH}_{2}\right)_{10} M e\right], 0.98(3 \mathrm{H}, \mathrm{t}, J 7.4$, $\left.\mathrm{PCHCH}_{2} \mathrm{Me}\right), 1.01-1.43\left[18 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{9} \mathrm{Me}\right], 1.6-1.7(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{PCHCH}_{2} \mathrm{Me}\right), 2.18\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 2.5-2.6(1$ $\mathrm{H}, \mathrm{m}, \mathrm{PCH}), 2.79\left(1 \mathrm{H}, \mathrm{dd}, J 10.3,18.1,4-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.96(1 \mathrm{H}$, dd, $\left.J 9.1,18.1,4-\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.72-4.91(1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}), 7.46-7.53$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}$) and 7.76-7.85 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}$); M/z $467\left(\mathrm{M}^{+}\right.$, 2%), $466(\mathrm{M}-\mathrm{H}, 2), 340\left(\mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{19}, 2\right), 327\left(\mathrm{M}-\mathrm{C}_{10} \mathrm{H}_{20}\right.$, 4), $312\left(\mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{23}, 3\right), 286\left(\mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{CN}, 40\right), 271$ $\left(\mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{CN}, \quad \mathrm{Me}, 20\right), 266\left(\mathrm{M}-\mathrm{Ph}_{2} \mathrm{PO}, 25\right), 258$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}, ~ 30\right], \quad 244 \quad\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{7}, 80\right], 229$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 70\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 35\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 50\right), 77$ $(\mathrm{Ph}, 30)$ and $57\left(\mathrm{C}_{4} \mathrm{H}_{9}, 100\right)$.
(1'R*,5R*)- and (1'R*, 5S*)-5-(1'-Diphenylphosphinoylpro-pyl)-3-methoxycarbonylpropyl-4,5-dihydroisoxazoles 4p and 5p. -By method A. Methyl 5-hydroxyiminopentanoate (1.1 g, $7.4 \mathrm{mmol})$ and the phosphine oxide $2 \mathrm{c}(1.0 \mathrm{~g}, 3.6 \mathrm{mmol})$ gave a brown oil which was purified by flash column chromatography on silica (100 g) eluting with ethyl acetate. The first fraction to be eluted was the phosphine oxide 2 c ($470 \mathrm{mg}, 47 \%$ recovery). The second fraction to be eluted contained a mixture of $4 p$ and 5p and the phosphine oxide $\mathbf{2 c}$. This fraction was purified by HPLC eluting with chloroform-methanol ($50: 1$) to give the anti-4,5-dihydroisoxazole $4 \mathbf{p}(184 \mathrm{mg}, 12 \%$), as needles, m.p. $101-102{ }^{\circ} \mathrm{C}$ (from EtOAc) (Found: M^{+}, 413.1741. $\mathrm{C}_{23} \mathrm{H}_{28^{-}}$ $\mathrm{NO}_{4} \mathrm{P}$ requires $M, 413.1776$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 1735(\mathrm{C}=\mathrm{O})$, $1605(\mathrm{C}=\mathrm{N}), 1435(\mathrm{P}-\mathrm{Ph})$ and $1190(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.81(3 \mathrm{H}$, $\left.\mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right), 1.63-1.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.88(2 \mathrm{H}$, br quintet, $\left.J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 2.33\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{CO}_{2}\right.$ or $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), $2.35\left(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{CO}_{2}\right.$ or $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), $2.76-2.85(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 2.84\left(1 \mathrm{H}, \mathrm{dd}, J 11.2,18.0,4-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, $3.20\left(1 \mathrm{H}, \mathrm{dd}, J 9.5,18.0,4-\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.65(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.62-$ $4.74(1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}), 7.43-7.55\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right)$ and $7.78-7.87(4$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right) ; m / z 414(\mathrm{M}+\mathrm{H}, 30 \%), 413\left(\mathrm{M}^{+}, 30\right), 412(\mathrm{M}-$ $\mathrm{H}, 20$), 396 ($\mathrm{M}-\mathrm{OH}, 25$), 382 ($\mathrm{M}-\mathrm{OMe}, 70$), $340(\mathrm{M}-$ $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}, \quad 15\right), \quad 312 \quad\left[\mathrm{M}-\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{Me}, \quad 5\right], \quad 271$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{5} \mathrm{H}_{10}, ~ 15\right], 244 \quad\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{7}, ~ 75\right], ~ 229$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 100\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 60\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 80\right)$ and $77(\mathrm{Ph}, 30)$; and a mixture of the phosphine oxide 2 c and the syn-4,5-dihydroisoxazole 5 p in the ratio of $2: 1(310 \mathrm{mg}, 21 \%$ of $\mathbf{2 c}$ and 7% of $\mathbf{5 p}$) as a white solid (Found: $\mathbf{M}-\mathrm{OMe}, 382.1543$. $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{P}$ requires 382.1572). The mixture had $v_{\text {max }} / \mathrm{cm}^{-1}$ $\left(\mathrm{CDCl}_{3}\right) 1730(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{N}), 1435(\mathrm{P}-\mathrm{Ph})$ and 1180 $(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.92(3 \mathrm{H}, \mathrm{t}, J 7.4$, Me of alkene), $0.95(3 \mathrm{H}, \mathrm{t}$, $J 7.4, \mathrm{CH}_{2} \mathrm{Me}$ of 4,5-dihydroisoxazole), $1.56-1.91(6 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{Me}$ of both compounds and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$ of 4 ,5dihydroisoxazole), $2.24\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right.$ or $\mathrm{CH}_{2} \mathrm{CO}_{2}$ of 4,5-dihydroisoxazole), $2.31\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right.$ or $\mathrm{CH}_{2} \mathrm{CO}_{2}$ of 4,5-dihydroisoxazole), $2.54-2.65(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}$ of 4,5-dihydroisoxazole), $2.79\left(1 \mathrm{H}\right.$, dd, $J 10.5,17.5,4-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$ of 4,5-dihydroisoxazole), $2.82-2.94$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}$ of alkene), 3.00
($1 \mathrm{H}, \mathrm{dd}, J 9.1,17.5,4-\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}$ of 4,5 -dihydroisoxazole), 3.65 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ of 4,5-dihydroisoxazole), 4.76-4.92 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}$ of 4,5-dihydroisoxazole), 4.96-5.05 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$ of alkene), $5.11-5.28\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right.$ of alkene), $5.60-5.77$ (1 $\mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$ of alkene), $7.38-7.57\left(12 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right.$ of both compounds) and $7.67-7.89\left(8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right.$ of both compounds).
($\left.1^{\prime} \mathrm{R}^{*}, 5 \mathrm{R}^{*}\right)$ - and ($\left.1^{\prime} \mathrm{R}^{*}, 5 \mathrm{~S}^{*}\right)$-5-($1^{\prime}-$ Diphenylphosphinoylbutyl)-3-undecyl-4,5-dihydroisoxazoles 4q and 5q.-By method A. Dodecanal oxime ($1.05 \mathrm{~g}, 5.2 \mathrm{mmol}$) and the phosphine oxide 2d $(1.0 \mathrm{~g}, 3.6 \mathrm{mmol})$ gave a white solid which was purified by flash column chromatography on silica (100 g) eluting with ethyl acetate. The first fraction to be eluted gave a clear gum which was tentatively identified by ${ }^{1} \mathrm{H}$ NMR as 3,4 -diundecylfurazan 2 -oxide. The second fraction contained a mixture of the two isoxazolines. The third fraction contained the phosphine oxide $\mathbf{2 d}(0.7 \mathrm{~g}, 70 \%$ recovery). The mixed fraction was separated by HPLC eluting with chloroform-methanol (200:1) to give the anti-4,5-dihydroisoxazole $\mathbf{4 q}(370 \mathrm{mg}, 22 \%$), as needles, m.p. $92-$ $94.5^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, 75.0; H, 9.5; N, 3.0; P, 6.7\%; $\mathrm{M}^{+}, 481.3070 . \mathrm{C}_{30} \mathrm{H}_{44} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 74.8 ; \mathrm{H}, 9.2 ; \mathrm{N}, 2.9 ; \mathrm{P}$, $6.4 \% ; \mathrm{M}, 481.3109) ; v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 1610(\mathrm{C}=\mathrm{N}), 1440(\mathrm{P}-\mathrm{Ph})$ and $1190(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.72\left[3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{PCH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}\right]$, $0.86\left[3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6,\left(\mathrm{CH}_{2}\right)_{10} \mathrm{Me}\right], 1.03-1.23\left[16 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{8} \mathrm{Me}\right]$, 1.34-1.77 ($6 \mathrm{H}, \mathrm{m}, \mathrm{PCHCH}_{2} \mathrm{CH}_{2}$ and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), 2.28 (2 H , $\left.\mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 2.82\left(1 \mathrm{H}, \mathrm{dd}, J 11.0,17.9,4-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, 2.81-2.91 ($1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}$), $3.20\left(1 \mathrm{H}, \mathrm{dd}, J 9.4,17.9,4-\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right)$, 4.62-4.70 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}$), $7.42-7.54\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right)$ and $7.77-$ $7.86\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right) ; m / z 482(\mathrm{M}+\mathrm{H}, 6 \%), 481\left(\mathrm{M}^{+}, 5\right), 480$ (M - H, 10), $452(M-E t, 10), 439\left(M-C_{3} H_{6}, 5\right), 438(M-$ $\left.\mathrm{C}_{3} \mathrm{H}_{7}, 4\right), 396\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{13}, 2\right), 354\left(\mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{19}, 10\right), 341$ $\left(\mathrm{M}-\mathrm{C}_{10} \mathrm{H}_{20}, 15\right), 326\left(\mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{23}, 6\right), \quad 300(\mathrm{M}-$ $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{CN}, 13$), $299\left(\mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{CN}, 15\right), 280\left(\mathrm{M}-\mathrm{Ph}_{2} \mathrm{PO}\right.$, 50), $258\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{4} \mathrm{H}_{9}, 60\right], 229\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 100\right], 201$ $\left(\mathrm{Ph}_{2} \mathrm{PO}, 25\right)$, and $77(\mathrm{Ph}, 6)$; and the syn-4,5-dihydroisoxazole $5 \mathbf{q}$ ($180 \mathrm{mg}, 11 \%$), as needles, m.p. $88-92^{\circ} \mathrm{C}$ (from EtOAc) (Found: $\mathrm{C}, 74.5 ; \mathrm{H}, 9.2 ; \mathrm{N}, 2.7 ; \mathrm{P}, 6.6 . \mathrm{C}_{30} \mathrm{H}_{44} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 74.8 ; \mathrm{H}$, 9.2; $\mathrm{N}, 2.9 ; \mathrm{P}, 6.4 \%) ; v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 1610(\mathrm{C}=\mathrm{N}), 1435(\mathrm{P}-\mathrm{Ph})$ and $1185(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.73\left[3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{PCH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}\right]$, $0.87\left[3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8,\left(\mathrm{CH}_{2}\right)_{10} \mathrm{Me}\right], 1.24-1.75\left[22 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{9} \mathrm{Me}\right)$, and $\left.\mathrm{PCHCH} 2 \mathrm{CH}_{2}\right], 2.18\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right), 2.60-2.71$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 2.81\left(1 \mathrm{H}, \mathrm{dd}, J 10.4,17.5,4-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.99(1 \mathrm{H}$, dd, $J 9.1,17.5,4-\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}$), 4.7-4.9 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}$), 7.42-7.55 (6 $\left.\mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right)$ and $7.76-7.86\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right) ; m / z 482(\mathrm{M}+\mathrm{H}$, $10 \%), 481\left(\mathrm{M}^{+}, 7\right), 480(\mathrm{M}-\mathrm{H}, 15), 465(\mathrm{M}-\mathrm{O}, 5), 464$ (M $-\mathrm{OH}, 3$), $463\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 4\right), 452(\mathrm{M}-\mathrm{Et}, 7), 439(\mathrm{M}-$ $\left.\mathrm{C}_{3} \mathrm{H}_{6}, 5\right), 354\left(\mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{19}, 5\right), 341\left(\mathrm{M}-\mathrm{C}_{10} \mathrm{H}_{20}, 20\right), 326$ $\left(\mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{23}, 10\right), 300\left(\mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{CN}, 20\right), 299(\mathrm{M}-$ $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{CN}, 22$), $280\left(\mathrm{M}-\mathrm{Ph}_{2} \mathrm{PO}, 75\right), 271\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{5} \mathrm{H}_{10}\right.$, 30], $\left.258\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{4} \mathrm{H}_{9}, 60\right], 229\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 100\right)\right] 201$ ($\mathrm{Ph}_{2} \mathrm{PO}, 20$) and 77 ($\mathrm{Ph}, 15$) (Found: $\mathrm{M}^{+}-\mathrm{H}, 480.3054$. $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{NO}_{2} \mathrm{P}$ requires 480.3031).
($\left.1^{\prime} \mathrm{R}^{*}, 5 \mathrm{R}^{*}\right)$ - and $\left(1^{\prime} \mathrm{R}^{*}, 5 \mathrm{~S}^{*}\right)-5-\left(1^{\prime}-\right.$ Diphenylphosphinoylbutyl)3 -phenyl-4,5-dihydroisoxazoles 4 r and 5 r .-By method A. The phosphine oxide 2 d ($281 \mathrm{mg}, 1 \mathrm{mmol}$), benzaldehyde oxime ($0.17 \mathrm{~cm}^{3}, 2 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right.$), and aqueous $\mathrm{NaOCl}(2$ $\mathrm{mol} \mathrm{dm}{ }^{-3} ; 1.5 \mathrm{~cm}^{3}, 3 \mathrm{mmol}$) were stirred together for 19 d , with more oxime and NaOCl added after 5,11 and 15 d . The residue was purified by column chromatography on SiO_{2}, eluting with EtOAc-hexane ($85: 15$). The first compound isolated was the anti-4,5-dihydroisoxazole $4 \mathrm{r}(249 \mathrm{mg}, 62 \%$) as transparent prisms, m.p. (from EtOAc-hexane) $200-202^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 74.1$; $\mathrm{H}, 6.5 ; \mathrm{N}, 3.5 \% ; \mathrm{M}^{+}-\mathrm{Et}$, 374.1337. $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{P}$ requires C , 74.4; H, 6.5; N, 3.5\%; M - Et, 374.1310); R_{F} (EtOAc-hexane, 9:1) 0.43; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right)$ 3080-2960 (aryl CH), 2960-2750 $(\mathrm{CH}), 1580(\mathrm{Ph}), 1420(\mathrm{P}-\mathrm{Ph}), 1175(\mathrm{P}=\mathrm{O})$ and $1100(\mathrm{C}-\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.71(3 \mathrm{H}, \mathrm{t} J 7.3, \mathrm{Me}), 1.00-1.15(1 \mathrm{H}, \mathrm{m}), 1.25-1.39$
$(1 \mathrm{H}, \mathrm{m}), 1.62-1.80(2 \mathrm{H}, \mathrm{m}), 2.99(1 \mathrm{H}, \mathrm{dtd}, J 3.2,5.8$ and 9.1 , PCH), $3.26\left(1 \mathrm{H}\right.$, dd, $J 11.1$ and $\left.17.5,4-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.61(1 \mathrm{H}, \mathrm{dd}, J$ 10.1 and 17.7,4- $\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}$), 4.86 (1 H , dddd, $J 3.4,4.2,10.0$ and 11.0 , OCH), 7.36-7.39 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhCN), 7.40-7.52 (6 H , $\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and $\mathrm{PhCN}, 7.65-7.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and PhCN) and 7.81-7.96 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhCN); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 14.2$ (Me), 22.8 (d, J6, $\mathrm{CH}_{2} \mathrm{Me}$), $24.5\left(\mathrm{CH}_{2}\right), 36.4\left(\mathrm{CH}_{2}\right), 40.3(\mathrm{~d}, J 7$, $\mathrm{PCH}), 80.24$ (d, $J 5, \mathrm{OCH}), 126.7,128.7,128.8,128.9,129.0$, 129.3 (NC- $C_{\text {ary }}$), 130.1, 130.6, 130.7, 130.7, 130.8, 131.9, 132.2 (d, J 94, ipso C) and $157.7(\mathrm{C}=\mathrm{N})$; $m / z 374\left(\mathrm{M}^{+}-\mathrm{Et}, 0.3 \%\right)$, $271\left(\mathrm{M}^{+}-\mathrm{Et}-\mathrm{PhCN}, 1\right), 258\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}, 38\right], 229$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 100\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 17\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 28\right)$ and 77 ($\mathrm{Ph}, 29$). The second fraction isolated was a mixture of the phosphine oxide $2 \mathrm{~d}(22.5 \mathrm{mg}, 8 \%)$ and the syn-4,5-dihydroisoxazole 5 ((11.5%). The latter was purified by HPLC eluting with EtOAc to give needles, m.p. 202-204 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{6}$, 361.1236. $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6}, 361.1232$); R_{F} (EtOAc) 0.42; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 3100-3000$ (aryl CH), 30002800 (CH), 1720 (C=N), 1590 (Ph), 1430 (P-Ph), 1180 (P=O) and $1110(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.76(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{Me}), 1.30-1.39(1$ $\mathrm{H}, \mathrm{m}), 1.53-1.77(3 \mathrm{H}, \mathrm{m}), 2.72(1 \mathrm{H}$, quintuplet d, $J 3.9$ and 6.7 , PCH), $3.22\left(1 \mathrm{H}, \mathrm{dd}, J 10.5\right.$ and $\left.17.0,4-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.40(1 \mathrm{H}, \mathrm{dd}, J$ 9.0 and $\left.17.0,4-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 5.00(1 \mathrm{H}$, br quintet, $J 9.2, \mathrm{OCH}), 7.29-$ 7.35 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhCN), $7.40-7.51$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and $\mathrm{PhCN})$ and $7.77-7.87\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and PhCN$) ; m / z 361\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{C}_{3} \mathrm{H}_{6}, 0.1 \%\right), 285\left(\mathrm{M}^{+}-\mathrm{PhCN}-\mathrm{Me}, 0.1\right), 258\left(\mathrm{M}^{+}-\right.$ $\mathrm{PhCN}-\mathrm{C}_{3} \mathrm{H}_{6}, 32$), $229\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 100\right]$, $202\left(\mathrm{Ph}_{2} \mathrm{POH}\right.$, 12) and $201\left(\mathrm{Ph}_{2} \mathrm{PO}, 19\right)$.
($\left.1^{\prime} \mathrm{R}^{*}, 5 \mathrm{R}^{*}\right)$ - and ($\left.1^{\prime} \mathrm{R}^{*}, 5 \mathrm{~S}^{*}\right)$-5-(1'-Diphenylphosphinoylbutyl)-3-methoxycarbonylethyl-4,5-dihydroisoxazoles 4s and 5s.-By method G. Methyl 4-nitrobutanoate ${ }^{21}(735 \mathrm{mg}, 5.0 \mathrm{mmol})$, the phosphine oxide $2 \mathrm{~d}(0.5 \mathrm{~g}, 2.0 \mathrm{mmol})$ and phenyl isocyanate $\left(0.46 \mathrm{~g}, 0.42 \mathrm{~cm}^{3}, 3.9 \mathrm{mmol}\right)$ gave a brown oil which was purified by flash column chromatography on silica (150 g) eluting with ethyl acetate. The first compound to be eluted was the phosphine oxide 2 d ($280 \mathrm{mg}, 56 \%$ recovery). The second product was a mixture of 4 s and 5 s in a ratio of 3:1 (${ }^{1} \mathrm{H} N \mathrm{NR}$). Separation by HPLC eluting with methanol-chloroform ($150: 1$) gave the anti-4,5-dihydroisoxazole $4 \mathrm{~s}(250 \mathrm{mg}, 34 \%)$, as needles, m.p. $104-107^{\circ} \mathrm{C}$ (from EtOAc) (Found: $\mathrm{M}-\mathrm{OMe}$, 382.1569. $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{P}$ requires 382.1572); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right)$ $1730(\mathrm{C}=\mathrm{O}), 1598(\mathrm{C}=\mathrm{N}), 1440(\mathrm{P}-\mathrm{Ph})$ and $1185(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.72\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{Me}\right), 0.93-1.17(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}$), 1.20-1.40 (1 H, m, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}$), 1.49-1.75 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$), 2.54-2.70 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}$), 2.79$2.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHP}\right.$ and $\left.4-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.22(1 \mathrm{H}, \mathrm{dd}, J 17.5,9,4-$ $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 3.66 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.63-4.77 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}$), 7.44-7.51 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}$) and $7.77-7.85\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right) ; m / z 382(\mathrm{M}-\mathrm{OMe}$, 15%), 354 (M - OMe, CO, 2), $258\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}, 28\right], 243$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{6}, 3\right], 229\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 100\right], 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 30\right)$ and 77 ($\mathrm{Ph}, 5$); and the syn 4,5-dihydroisoxazole $5 \mathrm{~s}(45 \mathrm{mg}, 6 \%)$, as needles, m.p. $106-110^{\circ} \mathrm{C}$ (from EtOAc) (Found: $\mathrm{M}-\mathrm{OMe}$, 382.1567. $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{P}$ requires 382.1572); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right)$ 1728 ($\mathrm{C}=\mathrm{O}$), $1597(\mathrm{C}=\mathrm{N})$, $1430(\mathrm{P}-\mathrm{Ph})$ and $1182(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.73\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{Me}\right), 1.16-1.37(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}$), 1.42-1.84 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}$), 2.44-2.58 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}$), $2.55-2.74(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 2.83(1 \mathrm{H}, \mathrm{dd}, J$ $\left.10,17.5,4-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.05\left(1 \mathrm{H}, \mathrm{dd}, J 9,17.5,4-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.66(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 4.75-4.93(1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}), 7.44-7.50\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right)$ and 7.76-7.86 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}$); m/z 382 ($\mathrm{M}-\mathrm{OMe}, 10 \%$), $258\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}, 30\right], 243$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{6}, 5\right], 229$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 100\right], 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 30\right)$ and $77(\mathrm{Ph}, 3)$.
($\left.1^{\prime} \mathrm{R}^{*}, 5 \mathrm{R}^{*}\right)$ - and ($\left.1^{\prime} \mathrm{R}^{*}, 5 \mathrm{~S}^{*}\right)$-5-($1^{\prime}-$ Diphenylphosphinoylbutyl)-3-methoxycarbonylpropyl-4,5-dihydroisoxazoles 4t and 5t.-By method A. Methyl 5-hydroxyiminopentanoate ($1.0 \mathrm{~g}, 7.0 \mathrm{mmol}$) and the phosphine oxide $\mathbf{2 d}(1.0 \mathrm{~g}, 3.6 \mathrm{mmol})$ gave an orange
gum which was purified by flash column chromatography on silica ($\mathbf{5 0} \mathrm{g}$) eluting with ethyl acetate. The first fraction to be eluted was the phosphine oxide $\mathbf{2 d}(470 \mathrm{mg}, 47 \%$ recovery). The third fraction was a mixture of the two diastereoisomers 4 t and 5t and the phosphine oxide 2d. Purification by HPLC eluting with chloroform-methanol (100:1) gave as the first fraction the anti-4,5-dihydroisoxazole $4 \mathrm{tt}(147 \mathrm{mg}, 10 \%$), as plates, m.p. $111-114^{\circ} \mathrm{C}$ (from $\left.\mathrm{MeOH}-\mathrm{EtOAc}\right)$ (Found: M^{+}, 427.1896. $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{P}$ requires $M, 427.1913$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 1728$ $(\mathrm{C}=\mathrm{O}), 1958(\mathrm{C}=\mathrm{N}), 1430(\mathrm{P}-\mathrm{Ph})$ and $1180(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $0.72\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{Me}\right), 0.97-1.16\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}\right.$ or $\left.\mathrm{PCHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.16-1.39\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}\right.$ or $\mathrm{PCHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$ 1.46-1.79 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}$ or PCHCH 2$), 1.87(2 \mathrm{H}$, br quintet, $J 7.4, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}$), $2.33\left(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{CO}_{2}\right.$ or $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), $2.34\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{CH}_{2} \mathrm{CO}_{2}\right.$ or $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), $2.83\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.9,17.9,4-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.85-2.90(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH})$, $3.19\left(1 \mathrm{H}, \mathrm{dd}, J 9.4,17.9,4-\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.64(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.62$ $4.68(1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}), 7.42-7.54\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right)$ and $7.77-7.86$ (4 $\left.\mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right) ; m / z 427\left(\mathrm{M}^{+}, 5 \%\right), 409\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 10\right), 396(\mathrm{M}-$ $\mathrm{OMe}, 25), 368\left(\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}, 2\right), 354\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}, 5\right)$, $258\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{4} \mathrm{H}_{9}, 40\right], 229 \quad\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 100\right], 201$ $\left(\mathrm{Ph}_{2} \mathrm{PO}, 30\right)$ and $77(\mathrm{Ph}, 100)$. The second fraction to be eluted was a mixture of the phosphine oxide $\mathbf{2 d}$ and $5 t$ in the ratio of $1: 1(210 \mathrm{mg})$. The third fraction to be eluted was the syn-4,5dihydroisoxazole 5t ($105 \mathrm{mg}, 7 \%$), as needles, m.p. $115-117^{\circ} \mathrm{C}$ (from EtOAc) (Found: $\mathrm{M}^{+}, 427.1901 . \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{P}$ requires $M, 427.1913)$; $v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 1730(\mathrm{C}=\mathrm{O}), 1605(\mathrm{C}=\mathrm{N})$, $1430(\mathrm{P}-\mathrm{Ph})$ and $1180(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.74(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\mathrm{CH}_{2} \mathrm{Me}$), 1.22-1.33(1 H, m, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}$ or $\left.\mathrm{PCHCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.47-$ $1.74\left(3 \mathrm{H}, \mathrm{m}\right.$, three of $\left.\mathrm{PCHCH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.79(2 \mathrm{H}$, br quintet, $\left.J 7.3, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.50\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{CH}_{2} \mathrm{CO}_{2}\right.$ or $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), 2.58 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3, \mathrm{CH}_{2} \mathrm{CO}_{2}$ or $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), $2.59-2.70(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 2.80\left(1 \mathrm{H}, \mathrm{dd}, J 10.4,17.2,4-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, $3.06\left(1 \mathrm{H}, \mathrm{dd}, J 9.0,17.2,4-\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.66(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.73-$ $4.89(1 \mathrm{H}, \mathrm{m}, \mathrm{CHO}), 7.41-7.56\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right)$ and $7.76-7.86$ (4 $\left.\mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{P}\right) ; m / z 427\left(\mathrm{M}^{+}, 5 \%\right), 409\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 5\right), 396(\mathrm{M}-$ OMe, 25), $354\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}, 2\right), 258\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{4} \mathrm{H}_{9}, 40\right]$, $229\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 100\right], 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 25\right)$ and $77(\mathrm{Ph}, 70)$.
($1^{\prime} \mathrm{R}^{*}, 5 \mathrm{R}^{*}$)- and ($\left.1^{\prime} \mathrm{R}^{*}, 5 \mathrm{~S}^{*}\right)$-5-(1'-Diphenylphosphinoyl-3'-methylbutyl)-3-phenyl-4,5-dihydroisoxazoles 4u and 5u.-By method B. The phosphine oxide 2e ($1.071 \mathrm{~g}, 3.59 \mathrm{mmol}$), benzaldehyde oxime ($1.21 \mathrm{~g}, 10 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(70 \mathrm{~cm}^{3}\right)$ and aqueous $\mathrm{NaOCl}\left(2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 15 \mathrm{~cm}^{3}, 30 \mathrm{mmol}\right)$ were sonicated for $c a$. 25 h over 4 d . The residue was purified by column chromatography on SiO_{2}, eluting with EtOAc -hexane (gradient from 1:4 to pure EtOAc). The first compound isolated was the anti-4,5-dihydroisoxazole $4 \mathrm{u}(781 \mathrm{mg}, 46 \%)$ as needles, m.p. (MeOAc-hexane) $188-190^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 74.6 ; \mathrm{H}, 6.7$; $\mathrm{N}, 3.3$. $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 74.8 ; \mathrm{H}, 6.8 ; \mathrm{N}, 3.35$); R_{F} (EtOAchexane, $9: 1) 0.47 ; v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 3100-3000($ arylCH $), 3000-$ $2800(\mathrm{CH}), 1720(\mathrm{C}=\mathrm{N}), 1595(\mathrm{Ph}), 1435(\mathrm{P}-\mathrm{Ph}), 1190(\mathrm{P}=\mathrm{O})$ and $1110(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.68\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.76(3 \mathrm{H}$, $\left.\mathrm{d}, J 6.5, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right), 1.36\left(1 \mathrm{H}\right.$, nonet, $\left.J 6.6, \mathrm{Me}_{2} \mathrm{CH}\right), 1.57(2 \mathrm{H}$, dd, $J 6.3$ and $\left.13.4, \mathrm{CH}_{2}\right), 3.06(1 \mathrm{H}$, dtd, $J 3.1,6.0$ and $9.1, \mathrm{PCH})$, $3.26\left(1 \mathrm{H}, \mathrm{dd}, J 11.1\right.$ and $\left.17.6,4-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.61(1 \mathrm{H}, \mathrm{dd}, J 10.1$ and $\left.17.6,4-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.90(1 \mathrm{H}$, dddd, $J 3.2,4.5,10.1$ and $11.1, \mathrm{OCH})$, $7.35-7.40\left(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and PhCN$), 7.45-7.54\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and PhCN$), 7.65-7.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and PhCN$)$ and $7.80-7.95$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhCN); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 14.2, 22.4 (d, J33), 26.8 (d, J7), $31.0\left(\mathrm{CH}_{2}\right), 36.3\left(\mathrm{CH}_{2}\right), 38.1(\mathrm{~d}, J 66, \mathrm{PCH}), 80.2,(\mathrm{~d}, J 6$, OC), 126.7, 128.6, 128.7, 129.0, 129.1, 129.3 (NC-C aryl), 130.1, 130.6, 130.7, 130.8, 130.9, 131.9, 131.9 (d, J 97, ipso-C), 132.0, $132.0\left(\mathrm{~d}, J 95\right.$, ipso-C) and $157.7(\mathrm{C}=\mathrm{N}) ; m / z 272\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{5} \mathrm{H}_{11}\right.$, 15%], 258 [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Bu}, 4\right], 243$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{6}, 7\right], 229$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 100\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 14\right)$ and $201\left(\mathrm{Ph}_{2} \mathrm{PO}, 30\right)$. The second compound isolated was the phosphine oxide $\mathbf{2 e}$ (339 $\mathrm{mg}, 32 \%$). The third compound isolated was the syn-isoxazoline

5u ($155 \mathrm{mg}, 9 \%$), m.p. (MeOAc-hexane) $187-188^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}-\mathrm{PhC}_{3} \mathrm{H}_{2} \mathrm{NO}, 272.1342 . \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{M}-$ $\mathrm{PhC}_{3} \mathrm{H}_{2} \mathrm{ON}, 272.1330$); R_{F} (EtOAc) $0.55 ; v_{\text {max }} / \mathrm{cm}^{-1} 2970-2800$ $(\mathrm{CH}), 1670(\mathrm{C}=\mathrm{N}), 1580(\mathrm{Ph}), 1365(\mathrm{P}-\mathrm{Ph}), 1175(\mathrm{P}=\mathrm{O})$ and 1110 $(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.68\left(3 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{CMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.82(3 \mathrm{H}, \mathrm{d}, J$ 6.2, $\mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$), $\left.1.40-1.74\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHMe}\right)_{2}\right), 2.78(1 \mathrm{H}, \mathrm{m}$, PCH $), 3.22\left(1 \mathrm{H}, \mathrm{dd}, J 10.7\right.$ and $\left.17.0,4-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.60(1 \mathrm{H}, \mathrm{dd}, J 9.1$ and 17.0, $\left.4-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.96(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}), 7.29-7.54(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$ and PhCN$)$ and $7.88-7.76\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and PhCN$)$; $\delta_{\mathrm{C}^{2}}\left(\mathrm{CDCl}_{3}\right) 21.5(\mathrm{Me}), 23.2(\mathrm{Me}), 28.8\left(\mathrm{~d}, J 9, C \mathrm{HMe}_{2}\right), 35.7$ $\left(\mathrm{CH}_{2}\right), 39.1\left(\mathrm{~d}, J 4, \mathrm{CH}_{2}\right), 41.1(\mathrm{~d}, J 61, \mathrm{PCH}), 81.2(\mathrm{OC}), 126.7$, $127.4,128.3,128.5,128.6,128.6,128.6,128.7,129.4$ (NC-C ary1), 130.0, 131.1, 131.2, 131.3,131.8, 131.8, 131.9, 132.6(d, J71, ipsoC) and $157.3(\mathrm{C}=\mathrm{N}) ; m / z 272\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{5} \mathrm{H}_{11}, 26 \%\right], 230$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}, 15\right], 229\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 100\right], 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 13\right)$ and 77 (Ph, 9).

By method A. Aqueous $\mathrm{NaOCl}\left(2 \mathrm{~mol} \mathrm{dm}^{-3} ; 1.5 \mathrm{~cm}^{3}, 3 \mathrm{mmol}\right.$) was added to a stirred solution of the phosphine oxide $\mathbf{2 e}(272$ $\mathrm{mg}, 0.91 \mathrm{mmol}$) and benzaldehyde oxime ($0.17 \mathrm{~cm}^{3}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(10 \mathrm{~cm}^{3}\right)$, and the mixture stirred for 19 d , with more oxime and bleach added after 5, 11 and 15 d . Work-up gave a residue which was purified by column chromatography on SiO_{2}, eluting with 25% hexane in EtOAc to give the anti-4,5-dihydroisoxazole 4 u ($160 \mathrm{mg}, 42 \%$) and a mixture of the phosphine oxide 2 e and the syn-4,5-dihydroisoxazole 5u (117 mg).

Method for Reduction of 4,5-Dihydroisoxazoles.- NaBH_{4} (5 equiv.) was added portionwise to a stirred solution of the 4,5dihydroisoxazole 4 or 5 (1 equiv.) and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (2 equiv.) in MeOH ($30 \mathrm{~cm}^{3}$ per mmol of the 4,5-dihydroisoxazole) at $-30^{\circ} \mathrm{C}$ under N_{2} or Ar , and the mixture stirred for $5-10 \mathrm{~min}$. The MeOH was removed under reduced pressure (CARE-it often bumps) and conc. aqueous $\mathrm{NH}_{3}\left(d 0.88,30 \mathrm{~cm}^{3}\right.$ per mmol of 4,5 -dihydroisoxazole) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (an equal volume) were added to the residue; the mixture was then stirred exposed to the air until the organic layer was a pale yellow-brown. The mixture was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times$ the same volume as before). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude reaction product.
(2R*,4R*)- and (2R*,4S*)-4-Amino-1-diphenylphosphinoyl-heptan-2-ol (6 or $7 \mathbf{7 a}$).-By the above method, $\mathrm{NaBH}_{4}(0.574 \mathrm{~g}$, 15.2 mmol), 5-diphenylphosphinoylmethyl-3-propyl-4,5-dihydroisoxazole 4 or $5 \mathrm{~b}(1.000 \mathrm{~g}, 3.06 \mathrm{mmol})$ and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $(1.50 \mathrm{~g}, 6.31 \mathrm{mmol})$ gave a yellow oil which was purified by column chromatography on SiO_{2}, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ -$\mathrm{MeOH}-\mathrm{NH}_{3}(100: 10: 2)$ to give a $60: 40$ mixture of two diastereoisomers \mathbf{A} and \mathbf{B} of the amino alcohols 6 or $7 \mathrm{a}(0.916 \mathrm{~g}$, 90.5%) as a yellow oil (Found: $\mathrm{M}^{+}, 331.1688 . \mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{P}$ requires $M, 331.1701) ; R_{\mathrm{F}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{NH}_{3}, 100: 10: 2\right)$ $0.40 ; v_{\text {max }} / \mathrm{cm}^{-1}($ thin film $) 3500-3100(\mathrm{OH}), 3060\left(\mathrm{NH}_{2}\right), 3000-$ $2800(\mathrm{CH}), 1600,1590$ and $1500(\mathrm{Ph}), 1465,1438(\mathrm{P}-\mathrm{Ph}), 1176$ $(\mathrm{P}=\mathrm{O}), 745,718$ and $699(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 0.87(3 \mathrm{H} \mathrm{A}$ and $\mathrm{B}, \mathrm{t}, J 3.2$, Me), 1.18-1.38 (4 HA and $5 \mathrm{HB}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~A}$ and B and $\left.3-H_{A} H_{B} B\right), 1.54\left(1 \mathrm{HB}\right.$, ddd, $J 3,8$ and $14,3-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}$), $1.72\left(1 \mathrm{HA}\right.$, ddd, $J 3,8$ and $\left.14,3-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.87(1 \mathrm{HA}, \mathrm{td}, J 4.5$ and $14,3-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}$), 2.34-2.49 (1 HA and B, m, NCH), 2.56-2.66 (1 HA and $\mathrm{B}, \mathrm{m}, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}, 2.78\left(1 \mathrm{HA}, \mathrm{m}, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.09(1 \mathrm{HB}$, $\mathrm{m}, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}$), 4.22-4.36 (1 HA and $\left.\mathrm{B}, \mathrm{m}, \mathrm{OCH}\right), 7.42-7.54$ (6 HA and $\left.\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and $7.72-7.82(4 \mathrm{HA}$ and B, m, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.9(\mathrm{Me}), 14.0(\mathrm{Me}), 18.7\left(\mathrm{CH}_{2} \mathrm{Me}\right), 19.1$ $\left(\mathrm{CH}_{2} \mathrm{Me}\right), 37.3\left(\mathrm{~d}, J 70, \mathrm{PCH}_{2}\right), 38.1\left(\mathrm{~d}, J 70, \mathrm{PCH}_{2}\right), 39.8$ $\left(\mathrm{CH}_{2}\right), 42.4\left(\mathrm{CH}_{2}\right), 43.5\left(\mathrm{~d}, \mathrm{~J} 9, \mathrm{CH}_{2}\right), 43.9\left(\mathrm{~d}, \mathrm{~J} 7, \mathrm{CH}_{2}\right)$, $48.0(\mathrm{NCH}), 52.0(\mathrm{NCH}), 64.6(\mathrm{OCH}), 67.9(\mathrm{OCH}), 128.5$, $128.6,128.7,128.7,128.8,130.5,130.6,130.7,130.8,130.8$, $130.9,131.7,131.8,133.0(\mathrm{~d}, J 98$, ipso-C) and $133.8(\mathrm{~d}, J 98$, ipso-C); m/z $\left.331\left(\mathrm{M}^{+}, 0.6 \%\right), 313 \mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 3\right), 288\left(\mathrm{M}^{+}\right.$

- $\mathrm{Pr}, 1.6), 270\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}, 58\right], 243\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}\right.$, 23], 216 [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Me}, 28\right], 215\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}, 47\right], 202$ $\left(\mathrm{Ph}_{2} \mathrm{POH}, 61\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 100\right), 130\left(\mathrm{M}^{+}-\mathrm{Ph}_{2} \mathrm{PO}, 12\right)$ and 77 (Ph, 25).
($2 \mathrm{R}^{*}, 4 \mathrm{R}^{*}$)- and ($2 \mathrm{R}^{*}, 4 \mathrm{~S}^{*}$)-4-Amino-1-diphenylphosphinoyl4 -phenylbutan-2-ol (6 or $7 \mathrm{7b}$).-By the above method, NaBH_{4} ($68 \mathrm{mg}, 1.8 \mathrm{mmol}$), 5 -diphenylphosphinoylmethyl-3-phenyl-4,5dihydroisoxazole 4 or $5 \mathrm{e}\left(130 \mathrm{mg}, 0.36 \mathrm{mmol}\right.$) and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($170 \mathrm{mg}, 0.72 \mathrm{mmol}$) gave a yellow oil which was purified by column chromatography on SiO_{2}, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{MeOH}-\mathrm{NH}_{3}$ ($125: 10: 2$). The first product eluted was the major amino alcohol 6 or $7 \mathrm{bb}(18 \mathrm{mg}, 14 \%$) as a yellow oil (Found: $\mathrm{M}^{+}, 365.1545 . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{P}$ requires $M, 365.1545$); R_{F} $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{NH}_{3}, 100: 10: 2\right) 0.28 ; v_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) 3400-3200 (OH and NH_{2}), 3078-3026 (aryl CH), 2935-2908 (CH), 1600, 1591 and 1492 (Ph), 1453, 1437 (P-Ph), 1180 (P=O) and 744, 718 and $698(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 1.83-2.04 ($2 \mathrm{H}, 2$ nd order $\mathrm{m}, \mathrm{NCCH}_{2}$), 2.37-2.62 ($2 \mathrm{H}, 2 \mathrm{nd}$ order m, PCH_{2}), 2.4-3.0 (3 H , br s, OH and NH_{2}), $4.23(1 \mathrm{H}$, d quintet, $J 4$ and $8, \mathrm{OCH}), 4.32$ ($1 \mathrm{H}, \mathrm{dd}, J 4$ and $8, \mathrm{NCH}$) and $7.20-7.80\left(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and $\mathrm{PhCN}) ; m / z 365\left(\mathrm{M}^{+}, 5 \%\right), 347\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 12\right), 330\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{NH}_{3}, 15\right), 260\left(\mathrm{M}^{+}-\mathrm{PhCH}_{2} \mathrm{~N}, 40\right), 245\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2}{ }^{-}\right.$ $\left.\mathrm{H}_{4} \mathrm{O}, 25\right], 216$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Me}, 67\right], 215$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}, 100\right], 202$ ($\mathrm{Ph}_{2} \mathrm{POH}, 70$), $201\left(\mathrm{Ph}_{2} \mathrm{PO}, 98\right), 106\left(\mathrm{PhCH}_{3} \mathrm{~N}, 58\right)$ and $77(\mathrm{Ph}$, 41). The second fraction eluted contained a mixture of diastereoisomers, predominantly the major, of the amino alcohols 6 or 7 b ($15 \mathrm{mg}, 11 \%$). The third fraction eluted contained a 5:2 mixture of the two diastereoisomeric amino alcohols 6 or 7 bA (as above) and $\mathbf{B}(67 \mathrm{mg}, 51 \%)$ as plates, m.p. $55-57^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 365.1536 . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{P}$ requires M, 365.1545); $R_{\mathrm{F}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{NH}_{3}, 100: 10: 2\right) 0.28$ and 0.22 ; $v_{\max } / \mathrm{cm}^{-1}$ (Nujol mull) $3300-3200$ (OH and NH_{2}), 3077-3027 (aryl CH), 2950-2840(CH), 1600, 1590 and $1490(\mathrm{Ph}), 1453$, $1435(\mathrm{P}-\mathrm{Ph}), 1178(\mathrm{P}=\mathrm{O})$ and 744,718 and $698(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$, 400 MHz) $1.84-2.04$ (2 HA and $\mathrm{B}, \mathrm{m}, \mathrm{NCCH}_{2}$), 2.33-2.66 (2 HA and $\left.\mathbf{B}, \mathrm{m}, \mathrm{PCH}_{2}\right), 4.02(1 \mathrm{HB}, \mathrm{dd}, 4$ and 9.5, NCH), 4.20-4.34 (2 HA and $1 \mathrm{HB}, \mathrm{m}, \mathrm{OCHA}$ and \mathbf{B} and NCHA), $720-7.30$ (5 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhCN), $7.40-7.58$ (6 HA and B, m, $\mathrm{Ph}_{2} \mathrm{PO}$ and PhCN) and 7.60-7.80 (4 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and $\mathrm{PhCN}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 37.0\left(\mathrm{~d}, J 70, \mathrm{CH}_{2}\right), 37.9\left(\mathrm{~d}, J 70, \mathrm{CH}_{2}\right), 46.3$ (d, $J 54, \mathrm{CH}_{2}$), $46.4\left(\mathrm{~d}, J 55, \mathrm{CH}_{2}\right), 52.4(\mathrm{NCH}), 55.8(\mathrm{NCH})$, $64.4(\mathrm{OCH}), 67.3(\mathrm{OCH}), 125.8,126.0,126.9,127.1,128.5$, 128.6, 128.6, 128.7, 128.8, 130.5, 130.6, 130.7, 130.7, 130.8, $130.8,130.8,131.7,131.9,133.1$ (d, $\left.J 99, \mathrm{PC}_{\text {ary }}\right), 133.4$ (d, $J 98$, $\left.\mathrm{PC}_{\text {ary }}\right), 145.6\left(\mathrm{NC}-C_{\text {ary }}\right)$ and $146.1\left(\mathrm{NC}-C_{\text {ary }}\right) ; m / z 365\left(\mathrm{M}^{+}\right.$, $11 \%), 347\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 5.3\right), 260\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}, 31\right], 245$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}, 21\right], \quad 216 \quad\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Me}, 61\right], 215$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}, 100\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 79\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 95\right), 164$ $\left(\mathrm{M}^{+}-\mathrm{Ph}_{2} \mathrm{PO}, 8.0\right), 146\left(\mathrm{M}^{+}-\mathrm{Ph}_{2} \mathrm{PO}-\mathrm{H}_{2} \mathrm{O}, 36\right), 106$ $\left(\mathrm{PhCH}_{3} \mathrm{~N}, 56\right)$ and $77(\mathrm{Ph}, 40)$.
$\left(2 \mathrm{R}^{*}, 3 \mathrm{R}^{*}, 5 \mathrm{R}^{*}\right)$ - and $\left(2 \mathrm{R}^{*}, 3 \mathrm{R}^{*}, 5 \mathrm{~S}^{*}\right)-5-$ Amino-2-diphenyl-phosphinoyloctan-3-ols 6 c .- By the above method, NaBH_{4} ($100 \mathrm{mg}, 2.5 \mathrm{mmol}$), anti-5-(1-diphenylphosphinoylethyl)-3-propyl-4,5-dihydroisoxazole 4 h ($100 \mathrm{mg}, 0.29 \mathrm{mmol}$) and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(280 \mathrm{mg}, 1.2 \mathrm{mmol})$ gave a yellow oil which was purified by column chromatography on SiO_{2}, eluting with $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{NH}_{3}, 100: 10: 2\right)$ to give a mixture of amino alcohols $6 \mathbf{c c} \mathbf{A}$ and \mathbf{B} in a $55: 45$ ratio ($85 \mathrm{mg}, 84 \%$) as a yellow oil (Found: $\mathrm{M}^{+}, 345.1855 . \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{P}$ requires $M, 345.1858$); R_{F} $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{NH}_{3}, 100: 10: 2\right) 0.28 ; v_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) 3500-3200 (NH_{2} and OH), 3093-3010 (aryl C-H), 2956-2872 $(\mathrm{C}-\mathrm{H}), 1591$ and $1500(\mathrm{Ph}), 1458,1438(\mathrm{P}-\mathrm{Ph}), 1175(\mathrm{P}=\mathrm{O})$ and 737,720 and $698(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 0.80(3 \mathrm{HB}, \mathrm{t}, \mathrm{J} 7$, $\mathrm{CH}_{2} \mathrm{Me}$), 0.89 ($3 \mathrm{HA}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}$), 1.15 ($3 \mathrm{HA}, \mathrm{dd}, J 7$ and 17 , PCMe), 1.19 ($3 \mathrm{HB}, \mathrm{dd}, 7.5$ and 16.5, PCMe), 1.18-1.46 (4 HA and $5 \mathrm{HB}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~A}$ and B and $\left.4-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{B}\right), 1.65(1 \mathrm{HA}$, ddd,
$J 3,10$ and 14.5, 4- $H_{A} H_{B}$), 1.75 (1 HA , ddd, J 2.5, 6 and 15, 4$\left.\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.05\left(1 \mathrm{HB}\right.$, br d, $\left.J 15,4-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.62-2.76(2 \mathrm{HB}$ and 1 HA, m, PCHA and B and NCHB), 3.19 ($1 \mathrm{HA}, \mathrm{m}, \mathrm{NCH}$), 4.11 (1 $\mathrm{HB}, \mathrm{m}, \mathrm{OCH}$), 4.19 ($1 \mathrm{HA}, \mathrm{m}, \mathrm{OCH}$), 7.42-7.52 (6 HA and B, $\mathrm{Ph}_{2} \mathrm{PO}$) and 7.76-7.88 (4 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 7.0$ $(\mathrm{Me}), 83.3(\mathrm{Me}), 13.9(\mathrm{Me}), 14.0(\mathrm{Me}), 18.7\left(\mathrm{MeCH}_{2}\right), 19.3$ (MeCH_{2}), $37.5\left(\mathrm{~d}, J 3, \mathrm{CH}_{2}\right), 38.0\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 38.2(\mathrm{~d}, J$ $70, \mathrm{PCH}), 38.3$ (d, $J 70, \mathrm{PCH}), 42.9\left(\mathrm{CH}_{2}\right), 48.5(\mathrm{NCH}), 52.6$ (NCH), 67.9 (OCH), 71.6 (d, J 4, OCH), 128.5, 128.6, 128.7, $130.7,130.8,130.9,131.0,131.1,131.4,131.5,131.6,132.2(\mathrm{~d}, J$ 96, ipso-C), 132.5, (d, J 94, ipso-C), 132.2 (d, J 98, ipso-C) and 132.3 (ipso-C); m/z $345\left(\mathrm{M}^{+}, 2.5 \%\right)$, 284 [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}, 56\right]$, $274\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}, 2.7\right], 259\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}, 16\right], 230$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}, 40\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 68\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 100\right), 144$ $\left(\mathrm{M}^{+}-\mathrm{Ph}_{2} \mathrm{PO}, 11\right)$ and $77(\mathrm{Ph}, 30)$.
$\left(2 \mathrm{R}^{*}, 3 \mathrm{~S}^{*}, 5 \mathrm{R}^{*}\right)$ - and ($2 \mathrm{R}^{*}, 3 \mathrm{~S}^{*}, 5 \mathrm{~S}^{*}$)-5-Amino-2-diphenyl-phosphinoyloctan-3-ols 7c.-By the above method, NaBH_{4} (135 $\mathrm{mg}, 3.6 \mathrm{mmol}$), syn-5-(1-diphenylphosphinoylethyl)-3-propyl4,5 -dihydroisoxazole $5 \mathrm{~h}\left(244 \mathrm{mg}, 0.72 \mathrm{mmol}\right.$) and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($333 \mathrm{mg}, 1.4 \mathrm{mmol}$) gave a mixture of the amino alcohols 7 c A and B in a $66: 34$ ratio ($212 \mathrm{mg}, 86 \%$) as a brown oil. This mixture was identified by its ${ }^{1} \mathrm{H}$ NMR spectrum: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 0.84 ($3 \mathrm{HA}, \mathrm{t}, J 6.3, \mathrm{CH}_{2} \mathrm{Me}$), 0.95 ($3 \mathrm{HB}, \mathrm{t}, J 7.4, \mathrm{CH}_{2} \mathrm{Me}$), 1.18 ($3 \mathrm{HA}, \mathrm{dd}, J 7.2$ and 16.9, CHMe), 1.23-1.54 (5 HA and $8 \mathrm{HB}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{~s}$ and CH MeB), $1.65\left(1 \mathrm{HA}\right.$, sextet, $J 7.4, \mathrm{MeCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 1.79 ($1 \mathrm{HB}, \mathrm{m}$), $2.19(1 \mathrm{HA}$, br t, J 7.4, NCH), $2.40(1 \mathrm{HA}, \mathrm{m}, \mathrm{PCH})$, 2.77 (1 HB, br s, NCH or PCH), 2.94 (1 HB, br s, PCH or NCH), $4.20-4.30(1 \mathrm{HA}$ and $\mathrm{B}, \mathrm{m}, \mathrm{OCH}), 7.40-7.55\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and 7.71-7.89 (4 H, m, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$.
$\left(1 \mathrm{R}^{*}, 3 \mathrm{R}^{*}, 4 \mathrm{R}^{*}\right)$ - and ($\left.1 \mathrm{~S}^{*}, 3 \mathrm{R}^{*}, 4 \mathrm{R}^{*}\right)$-1-Amino-4-diphenyl-phosphinoyl-1-phenylpentan-3-ols 6d.-By the above method, NaBH_{4} ($250 \mathrm{mg}, 6.67 \mathrm{mmol}$), anti-5-(1 -diphenylphosphinoyl-ethyl)-3-phenyl-4,5-dihydroisoxazole $4 \mathbf{k}(500 \mathrm{mg}, 1.33 \mathrm{mmol})$ and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(634 \mathrm{mg}, 2.67 \mathrm{mmol})$ gave a yellow oil (425 mg , 85%; isomer ratio $82: 18$ by NMR) which was purified by column chromatography on SiO_{2}, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{MeOH}-\mathrm{NH}_{3}(150: 10: 2)$. The first compound isolated was the major amino alcohol $\mathbf{6 d}$ ($316 \mathrm{mg}, 63 \%$) as needles, m.p. 185$188^{\circ} \mathrm{C}$ (Found: C, 72.4; H, 6.95; N, 3.5. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 72.8 ; \mathrm{H}, 6.9 ; \mathrm{N}, 3.7) ; R_{\mathrm{F}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{NH}_{3}, 100: 10: 2\right)$ $0.42 ; v_{\text {max }} / \mathrm{cm}^{-1}$ (Nujol mull) $3359\left(\mathrm{NH}_{2}\right), 3304(\mathrm{OH}), 3075-2854$ $(\mathrm{CH}), 1600$ and $1580(\mathrm{Ph}), 1438(\mathrm{P}-\mathrm{Ph}), 1176(\mathrm{P}=\mathrm{O})$ and 740 and $720(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 1.12(3 \mathrm{H}, \mathrm{dd}, J 7.6$ and 17 , Me), $1.90\left(1 \mathrm{H}, \mathrm{ddd}, J 3.5,10\right.$ and $\left.14.5,2-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.10(1 \mathrm{H}$, ddd, $J 2.5$, 7 and $\left.14.5,2-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.62(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}), 4.00(1 \mathrm{H}, \mathrm{m}$ incl. $J 2.5$ and $10, \mathrm{OCH}), 4.47(1 \mathrm{H}, \mathrm{dd}, J 3.5$ and $7, \mathrm{NCH}), 7.16-7.62(13 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and NCPh) and $7.70-7.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and $\mathrm{NCPh}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 9.0(\mathrm{Me}), 38.4(\mathrm{~d}, J 70, \mathrm{PCH}), 41.2(\mathrm{~d}, J 4$, $\left.\mathrm{CH}_{2}\right), 52.9(\mathrm{NCH}), 68.0(\mathrm{OCH}), 126.0,126.9,128.4,128.5,128.6$, 130.7, 130.7, 131.3, 131.4, 131.6, 132.1 (d, J97 ipso-C) and 144.3 $\left(\mathrm{NC}-\mathrm{C}_{\text {ary }}\right) ; m / z 403\left(\mathrm{M}^{+}+\mathrm{Na}+\mathrm{H}, 6.9 \%\right), 381\left(\mathrm{M}^{+}+\mathrm{H}\right.$, 29), $259\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}, 29\right], 230\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}, 15\right]$ and 201 ($\mathrm{Ph}_{2} \mathrm{PO}, 100$). The second compound isolated was the minor amino alcohol $\mathbf{6 d}\left(73 \mathrm{mg}, 14 \%\right.$) as needles, m.p. $128-132^{\circ} \mathrm{C}$ (Found: C, 72.8; H, 7.0; N, 3.7. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 72.8$; $\mathrm{H}, 6.9$; N, 3.7\%); $R_{\mathrm{F}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{NH}_{3}, 100: 10: 2\right) \mathbf{0 . 3 4 ;}$ $v_{\text {max }} / \mathrm{cm}^{-1} 3333$ and $3274\left(\mathrm{NH}_{2}\right), 3185-3023(\mathrm{OH}), 2954-2854$ (C-H), 1600 and 1580 and 1500 (Ph), 1457, 1437 (P-Ph), 1182 $(\mathrm{P}=\mathrm{O})$ and $765,740,720$ and $697(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$, 1.17 ($3 \mathrm{H}, \mathrm{dd}, J 7.5$ and $16.5, \mathrm{Me}$), 1.78 ($1 \mathrm{H}, \mathrm{td}, J 10.5$ and 14.5 , $\left.2 H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.22\left(1 \mathrm{H}, \operatorname{ddd}, J 2,3.5\right.$, and $\left.14.5,2-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.75(1 \mathrm{H}$, dqd, $J 4,7.5$ and 9, PCH), 3.88 (1 H , dd, $J 3.5$ and 10.5 , NCH), 4.22 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}$), $7.18-7.55$ ($11 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and NCPh), and $7.70-7.88\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and NCPh$) ; \delta_{(}\left(\mathrm{CDCl}_{3}\right) 7.8(\mathrm{Me})$, $38.4(\mathrm{~d}, J 71, \mathrm{PCH}), 40.0\left(\mathrm{CH}_{2}\right), 56.5(\mathrm{NCH}), 71.5(\mathrm{OCH}), 125.6$, 127.1, 128.7, 130.6, 130.8, 130.9, 131.0, 131.4, 131.6, 132.4
(d, J 96, ipso-C), 132.7 (d, J 95, ipso-C) and 146.2 (NC-C aryl); $m / z 403\left(\mathrm{M}^{+}+\mathrm{Na}+\mathrm{H}, 5.8 \%\right), 381\left(\mathrm{M}^{+}+\mathrm{H}, 34\right), 259$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}, 29\right], 229 \quad\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 11.7\right]$ and 201 ($\mathrm{Ph}_{2} \mathrm{PO}, 100$).

NOE Difference Experiments on anti,anti- and anti,syn-1-Amino-4-diphenylphosphinoyl-1-phenylpentan-3-ol 6d.-Major isomer. Irradiation at $\delta 4.5(\mathrm{NCH})$ gave enhancements at $7.8-$ 7.1 (unassigned aromatic protons, negative NOEs), $2.6(\mathrm{PCH}$, negative NOE), $2.1\left(4-H_{A} H_{B}\right.$, very small enhancement), 1.9 (4$\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}$), and 1.1 (Me, negative NOE). Irradiation at $\delta 4.0(\mathrm{OCH})$ gave enhancements at 7.8-7.1 (unassigned aromatic protons, negative NOEs), $2.6(\mathrm{PCH}), 2.1\left(4-H_{A} H_{B}\right), 1.9\left(4-H_{A} H_{B}\right.$, very small NOE) and 1.1 (Me).

Minor isomer. Irradiation at $\delta 4.2(\mathrm{OCH})$ gave enhancements at $\delta 7.8$ (unassigned aromatic protons), 7.8-7.2 (unassigned aromatic protons, negative NOE), 7.2-70 (unassigned aromatic protons), $3.9(\mathrm{NCH}), 2.7(\mathrm{PCH}), 2.2\left(4-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.9\left(4-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right)$ and 1.2 (Me, small negative NOE).
($\left.1 \mathrm{R}^{*}, 3 \mathrm{~S}^{*}, 4 \mathrm{R}^{*}\right)$ - and ($1 \mathrm{~S}^{*}, 3 \mathrm{~S}^{*}, 4 \mathrm{R}^{*}$)-1-Amino-4-diphenyl-phosphinoyl-1-phenylpentan-3-ols 7d.-By the above method, NaBH_{4} ($950 \mathrm{mg}, 25 \mathrm{mmol}$), syn-5-(1-diphenylphosphinoyl-ethyl)-3-phenyl-4,5-dihydroisoxazole $5 \mathrm{k}(1.002 \mathrm{~g}, 2.7 \mathrm{mmol})$ and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(2.38 \mathrm{~g}, 10 \mathrm{mmol})$ gave a yellow oil which was purified by column chromatography on SiO_{2}, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{NH}_{3}(100: 10: 2)$. The first compound isolated was the major amino alcohol $7 \mathrm{~d}(319 \mathrm{mg}, 31.5 \%)$ as needles, m.p. $162-164^{\circ} \mathrm{C}$ (Found: C, $72.6 ; \mathrm{H}, 7.1 ; \mathrm{N}, 3.4 \% ; \mathrm{M}^{+}, 379.1693$. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 72.8 ; \mathrm{H}, 6.9 ; \mathrm{N}, 3.7 \% ; M, 379.1701$); $R_{\mathrm{F}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{NH}_{3}, 100: 10: 2\right) 0.49 ; v_{\text {max }} / \mathrm{cm}^{-1}$ (Nujol mull) 3345 and $3264\left(\mathrm{NH}_{2}\right), 3148(\mathrm{OH}), 3083-3031$ (aryl CH), $2950-2800(\mathrm{C}-\mathrm{H}), 1600,1590$ and $1490(\mathrm{Ph}), 1455,1434(\mathrm{P}-\mathrm{Ph})$, $1192(\mathrm{P}=\mathrm{O})$ and 765,727 and $702(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $1.19(3 \mathrm{H}$, dd, $J 7$ and $17, \mathrm{Me}$), 1.63 (1 H , ddd, $J 4,8.5$, and 13.5 , $\left.2 H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.07\left(1 \mathrm{H}\right.$, ddd, $J 5,9.5$ and $\left.14,2-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.36(1 \mathrm{H}, \mathrm{d}$ quintet, $J 1$ and $7, \mathrm{PCH}), 1.5-2.8\left(\mathrm{OH}\right.$ and $\left.\mathrm{NH}_{2}\right), 4.15(1 \mathrm{H}$, dd, $J 4.5$ and $9, \mathrm{NCH}), 4.27(1 \mathrm{H}$, ddt, $J 1,4$ and $10, \mathrm{OCH}), 7.20-$ $7.30\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and NCPh$), 7.40-7.54\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and $\mathrm{NCPh})$ and $7.67-7.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and NCPh$) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $6.2(\mathrm{Me}), 36.2(\mathrm{~d}, J 70, \mathrm{PCH}), 43.7\left(\mathrm{~d}, J 12, \mathrm{CH}_{2}\right), 52.4(\mathrm{NCH})$, $66.2(\mathrm{OCH}), 126.1,127.0,128.6,128.6,128.8,128.8,129.0$, $130.7,130.8,130.8,130.8,131.7$ (d, J 100, ipso-C), 131.8 and $145.7\left(\mathrm{NC}-C_{\text {ary11 }}\right) ; m / z 379\left(\mathrm{M}^{+}, 5.5 \%\right), 361\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 2.3\right)$, $274\left(\mathrm{M}^{+}-\mathrm{PhCH}_{2} \mathrm{~N}, 24\right), 259 \quad\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}, 15\right], 230$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}, 89\right], 229\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 43\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 100\right)$, $201\left(\mathrm{Ph}_{2} \mathrm{PO}, 81\right), 178\left(\mathrm{M}^{+}-\mathrm{Ph}_{2} \mathrm{PO}, 13\right), 160\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{Ph}_{2} \mathrm{PO}-\mathrm{H}_{2} \mathrm{O}, 39\right), 106\left(\mathrm{PhCH}_{3} \mathrm{~N}, 55\right)$ and $77(\mathrm{Ph}, 32)$. The second fraction isolated was a mixture of the two diastereoisomeric amino alcohols 7d ($540 \mathrm{mg}, 53.3 \%$), the major \mathbf{A} (as above) and the minor \mathbf{B}, in $c a .1: 1$ ratio, as needles, m.p. $129-136{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 72.4 ; \mathrm{H}, 6.95 ; \mathrm{N}, 3.5 \% ; \mathrm{M}^{+}, 379.1681$. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{C}, 72.8 ; \mathrm{H}, 6.9 ; \mathrm{N}, 3.7 \% ; M, 379.1701$); $R_{\mathrm{F}}\left(\mathrm{CH}_{2} \mathrm{Cl}-\mathrm{MeOH}-\mathrm{NH}_{3}, 100: 10: 2\right) 0.49$ and $0.47 ; v_{\max } / \mathrm{cm}^{-1}$ (Nujol mull) 3340 and $3266\left(\mathrm{NH}_{2}\right), 3200-3100(\mathrm{OH}), 3070-$ $2830(\mathrm{CH}), 1600,1580$ and $1500(\mathrm{Ph}), 1457,1437(\mathrm{P}-\mathrm{Ph}), 1186$ $(\mathrm{P}=\mathrm{O})$ and $726,718,701$ and $695(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ 1.18 ($3 \mathrm{HA}, \mathrm{dd}, J 7$ and 17 , Me), 1.19 (3 HB , dd, $J 7$ and 17 , Me), 1.59-1.67 (1 HA and B, m, 2- $H_{A} H_{B}$), 2.00-2.11 (1 HA and \mathbf{B}, m, $\left.2-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.27(1 \mathrm{HB}$, d quintet, $J 1$ and $7.5, \mathrm{PCH}), 2.36(1 \mathrm{HA}$, d quintet, $J 1$ and $7, \mathrm{PCH}), 4.03(1 \mathrm{HB}, \mathrm{t}, J 7, \mathrm{NCH}), 4.12-4.20$ (1 HA and B, m, NCHA and OCHB), 4.26 (1 HA , ddt, $J 1,4$ and $10, \mathrm{OCH}$), 7.19-7.30 (5 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and NCPh), 7.407.54 (6 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and NCPh), and 7.69-7.78 (4 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and NCPh$) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 6.3(\mathrm{AMe}), 6.5(\mathrm{BMe})$, 36.3 (A, d, $J 70, \mathrm{PCH}), 37.3$ (B, d, $J 70, \mathrm{PCH}), 43.8$ (B, d, $J 12$, CH_{2}, superimposed on $\left.\mathrm{ACH}_{2}\right), 52.4(\mathbf{A}, \mathrm{NCH}), 55.0(\mathrm{BNCH})$, $66.2(\mathrm{AOCH}), 68.7(\mathrm{BOCH}), 126.2,127.0,127.1,128.5,128.5$,
128.6, 128.7, 128.7, 128.9, 130.8, 130.9, 131.7, 131.7 and 131.9 (d, ipso-C), 145.7 (ANC- $C_{\text {aryl }}$) and 145.8 (BNC- $C_{\text {aryl }}$); m/z 380 $\left(\mathrm{M}^{+}+\mathrm{H}, 5.6 \%\right), 379\left(\mathrm{M}^{+}, 3.7\right), 361\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 2\right), 284\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{H}_{2} \mathrm{O}-\mathrm{Ph}, 2.5\right), 274\left(\mathrm{M}^{+}-\mathrm{PhC}_{2} \mathrm{H}_{4}, 31\right), 259\left(\mathrm{M}^{+}-\right.$ PhNEt, 15), 230 [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Et}, 79\right], 229\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 44\right), 202$ $\left(\mathrm{Ph}_{2} \mathrm{POH}, 100\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 96\right), 178\left(\mathrm{M}^{+}-\mathrm{Ph}_{2} \mathrm{PO}, 12\right), 160$ $\left(\mathrm{M}^{+}-\mathrm{Ph}_{2} \mathrm{PO}-\mathrm{H}_{2} \mathrm{O}, 33\right), 106\left(\mathrm{PhCH}_{3} \mathrm{~N}, 63\right)$ and $77(\mathrm{Ph}, 48)$.
(1R*,3R*,4R*)- and (1S*,3R*,4R*)-1-Amino-4-diphenyl-phosphinoyl-1-phenylheptan-3-ols $6 \mathbf{e} .-\mathrm{By}$ the above method, NaBH_{4} ($35 \mathrm{mg}, 0.5 \mathrm{mmol}$), anti-3-(1'-diphenylphosphinoyl-butyl)-3-phenyl-4,5-dihydroisoxazole $4 \mathrm{r}(75 \mathrm{mg}, 0.19 \mathrm{mmol})$ and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(90 \mathrm{mg}, 0.4 \mathrm{mmol})$ gave a yellow oil which slowly crystallised and was shown by ${ }^{1} \mathrm{H}$ NMR to be a $5: 1$ mixture of two isomers \mathbf{A} and \mathbf{B}, respectively, of the amino alcohol $6 \mathrm{e}\left(71 \mathrm{mg}, 94 \%\right.$), m.p. $60-63^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 407.2013$. $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{P}$ requires $\left.M, 407.2014\right) ; R_{\mathrm{F}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\right.$ $\left.\mathrm{NH}_{3}, 150: 10: 2\right) 0.35$ and $0.29 ; v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3680$ and $3610\left(\mathrm{NH}_{2}\right), 3500-3140(\mathrm{OH}), 3000-2800(\mathrm{CH}), 1600(\mathrm{Ph}), 1450$ $(\mathrm{P}-\mathrm{Ph}), 1175(\mathrm{P}=\mathrm{O})$ and $1120(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 0.72$ ($3 \mathrm{HA}, \mathrm{t}, J 7.2, \mathrm{Me}$), 0.73 ($3 \mathrm{HB}, \mathrm{t}, J 7.0$, Me), $1.09-1.15$ (1 HA and $\left.\mathrm{B}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.35-1.41(1 \mathrm{HA}$ and B, m, $\mathrm{CH}_{2} \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}$), 1.52-1.60 (1 HA and B, m, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}_{2}$), 1.69 $1.75\left(1 \mathrm{HA}\right.$ and B, m, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}_{2}\right), 1.95\left(2 \mathrm{HA}, \mathrm{m}, J 5.3,2-\mathrm{H}_{2}\right)$, $2.1\left(2 \mathrm{HB}\right.$, br d, $\left.J \mathrm{ca} .13,2-\mathrm{H}_{2}\right), 2.46(1 \mathrm{HA}, \mathrm{m}, \mathrm{PCH}), 2.58(1 \mathrm{HB}$, $\mathrm{m}, \mathrm{PCH}), 3.8(1 \mathrm{HB}, \mathrm{dd}, J$ ca. 9.5 and 13 , NCH), 4.05 (1 HA , sextet, $J 5.4, \mathrm{OCH}), 4.18(1 \mathrm{HB}$, br $\mathrm{t}, J c a .9 .5, \mathrm{OCH}), 4.36(1 \mathrm{HA}$, $\mathrm{t}, J 5.2, \mathrm{NCH}$), $7.13-7.24$ (5 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhCN), 7.27-7.33 (2 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhCN), 7.34-7.51 (7 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhCN$), 7.59-7.66$ (2 HA and B, m, $\mathrm{Ph}_{2} \mathrm{PO}$ and PhCN) and $7.72-7.88$ (3 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and $\mathrm{PhCN}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.9(\mathrm{MeB}), 14.2(\mathrm{MeA}), 22.4\left(\mathrm{~d}, \mathrm{~J} 9, \mathrm{CH}_{2} \mathrm{~A}\right)$, $22.7\left(\mathrm{~d}, J 15, \mathrm{CH}_{2} \mathrm{~B}\right), 26.4\left(\mathrm{CH}_{2} \mathbf{B}\right), 27.1\left(\mathrm{CH}_{2} \mathbf{A}\right), 41.0\left(\mathrm{CH}_{2} \mathbf{B}\right)$, $42.0\left(\mathrm{CH}_{2} \mathrm{~A}\right), 43.4$ (d, $J 68$, PCHA), 43.7 (d $\left.J 42, \mathrm{PCHB}\right), 53.0$ (NCHA), 56.5 (NCHB), 68.2 (OCHA), 71.9 (OCHB), 125.7, 126.0, 126.9, $127.2\left(4^{\circ}\right), 128.0,128.4,128.5,128.7,130.5,130.6$, $130.8,130.8,130.9,131.0,131.3,131.5,132.8(\mathrm{~d}, J 94, i p s o$ C $)$ and $133.1(\mathrm{~d}, J 94$, ipso C$) ; m / z 408\left(\mathrm{M}^{+}, 3.5 \%\right), 302\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{PhCH}_{2} \mathrm{~N}, 17\right), 287\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}, 13\right], 258\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{Bu}\right.$, 19], 243 [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{6}, 7\right], 229$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 78\right], 202$ $\left(\mathrm{Ph}_{2} \mathrm{POH}, 100\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 63\right), 106\left(\mathrm{PhCH}_{3} \mathrm{~N}, 72\right)$ and 77 (Ph, 24).
($1 \mathrm{R}^{*}, 3 \mathrm{R}^{*}, 4 \mathrm{R}^{*}$)- and ($\left.1 \mathrm{~S}^{*}, 3 \mathrm{R}^{*}, 4 \mathrm{R}^{*}\right)$-1-Amino-4-diphenyl-phosphinoyl-6-methyl-1-phenylheptan-3-ols 6f.-By the above method, $\mathrm{NaBH}_{4}(189 \mathrm{mg}, 5 \mathrm{mmol})$, anti-5-(1'-diphenyl-phosphinoyl-3'-methylbutyl)-3-phenyl-4,5-dihydroisoxazole 4 u $(390 \mathrm{mg}, 0.93 \mathrm{mmol})$ and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(475 \mathrm{mg}, 2 \mathrm{mmol})$ gave a $3: 1$ ratio of the two amino alcohols 6 f , which was purified by column chromatography on SiO_{2}, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ -$\mathrm{MeOH}-\mathrm{NH}_{3}$ (200:10:2). The first fraction isolated was a $1: 1$ mixture of isomers A and $B(161 \mathrm{mg}, 41 \%)$ as a yellow amorphous solid, m.p. $180-186^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}$, 316.1579. $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{P}$ requires $\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}, 316.1592$); R_{F} $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{NH}_{3}, 150: 10: 2\right) 0.32$ and $0.27 ; v_{\max } / \mathrm{cm}^{-1}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3680$ and $3600\left(\mathrm{NH}_{2}\right), 3500-3130(\mathrm{OH}), 3000-2800$ $(\mathrm{CH}), 1600(\mathrm{Ph}), 1470-1420(\mathrm{P}-\mathrm{Ph}), 1185-1160(\mathrm{P}=\mathrm{O})$ and 1115 $(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.69\left(3 \mathrm{HB}, \mathrm{d}, J 6.2, \mathrm{CMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.71(3 \mathrm{HA}$, $\left.\mathrm{d}, J 6.1, \mathrm{CM}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.77\left(3 \mathrm{HB}, \mathrm{d}, J 6.5, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right), 0.78(3 \mathrm{HA}$, $\left.\mathrm{d}, J 6.4, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right), 1.24-1.45\left(1 \mathrm{HA}\right.$ and $\left.\mathrm{B}, \mathrm{m}, \mathrm{PCCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, $1.48-1.64\left(1 \mathrm{HA}\right.$ and $\left.\mathrm{B}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}\right), 1.66-1.88(2 \mathrm{HA}$ and 1 HB , $\mathrm{m}, \mathrm{PCCH}_{\mathrm{A}} H_{\mathrm{B}} \mathbf{A}$ and B , and $\left.2-H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathbf{A}\right), 1.93-1.98(2 \mathrm{HB}, \mathrm{m}$, $\left.2-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.10\left(1 \mathrm{HA}\right.$, ddd, $J 1.9,3.4$ and $\left.12.3,2-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.49-$ $2.59(1 \mathrm{HB}, \mathrm{m}, \mathrm{PCH}), 2.61-2.71$ (1 HA, m, PCH), 2.4-3.0 (very br, OH and NH_{2}), 3.81 (1 HA , dd, $J 3.5$ and 10.2 , NCH), 4.04 $(1 \mathrm{HB}, \mathrm{m}, \mathrm{OCH}), 4.19(1 \mathrm{HA}, \mathrm{tt}, J 2.2$ and $9.0, \mathrm{OCH}), 4.35(1 \mathrm{HB}$, $\mathrm{t}, J 5.2, \mathrm{NCH}), 7.12-7.53$ (11 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhCN), 7.54-7.66 (1 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhCN) and 7.70-7.89 (3

HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhCN$) ; m / z 316\left(\mathrm{M}^{+}-\mathrm{PhCH}_{2} \mathrm{~N}\right.$, $2 \%), 301\left(\mathrm{M}^{+}-\mathrm{PhEtN}, 9\right), 260 \quad\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}, 22\right]$, $245\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}, 12\right], 243$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}, 11\right], 229$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 82\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 100\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 57\right), 106$ $\left(\mathrm{PhCH}_{3} \mathrm{~N}, 55\right)$ and $77(\mathrm{Ph}, 13)$. The second fraction isolated contained the isomer \mathbf{B} of the 4,5 -dihydroisoxazole $\mathbf{6 f}$, contaminated by a little of isomer $\mathbf{A}(90 \mathrm{mg}, 23 \%)$, as a yellow oil (Found: $\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}, 316.1580 . \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{NO}_{2}$ P requires $\mathrm{M}-$ $\left.\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}, 316.1592\right) ; R_{\mathrm{F}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{NH}_{3}, 150: 10: 2\right) 0.27$; $v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3680$ and $3600\left(\mathrm{NH}_{2}\right), 3500-3130(\mathrm{OH})$, 3000-2800 (CH), $1600(\mathrm{Ph}), 1470-1420(\mathrm{P}-\mathrm{Ph}), 1185-1160$ $(\mathrm{P}=\mathrm{O})$ and $1115(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.69(3 \mathrm{H}, \mathrm{d}, J 6.2$, $\mathrm{C} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$), $0.77\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right), 1.24-1.41(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PCCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.55\left(1 \mathrm{H}\right.$, nonet, $\left.J 6.6, \mathrm{Me}_{2} \mathrm{CH}\right), 1.67-1.82(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PCCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.93-2.04\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.54(1 \mathrm{H}, \mathrm{qd}, J 4.2$ and $13.9, \mathrm{PCH}), 4.06(1 \mathrm{H}, \mathrm{tdd}, J 4.2,9.1$ and $12.8, \mathrm{OCH}), 4.37(1 \mathrm{H}$, dd, J 4.5 and $5.9, \mathrm{NCH}), 7.13-7.500\left(11 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and PhCN) and $7.56-7.84\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and PhCN$) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 21.6 (Me), 22.9 (Me), 26.6 ($\mathrm{Me}_{2} \mathrm{C}$), $33.7\left(\mathrm{PCCH}_{2}\right), 41.0$ (d, $J 88$, $\mathrm{PCH}), 42.1\left(\mathrm{OCCH}_{2}\right), 53.1(\mathrm{NCH}), 68.7(\mathrm{OCH}), 125.6,126.0$, 126.9, 128.4, 128.4, 128.6, 128.7, 130.6, 130.6, 131.0, 131.0, 131.3, 131.5, 132.5 (d, J95, ipso C), 132.9 (d, J 93, ipso C) and $144.0\left(\mathrm{NC}-C_{\text {ary }}\right) ; m / z 421\left(\mathrm{M}^{+}, 2 \%\right), 317\left(\mathrm{M}^{+}-\mathrm{PhCN}, 1.8\right)$, $316\left(\mathrm{M}^{+}-\mathrm{PhCH}_{2} \mathrm{~N}, 4\right), 301\left(\mathrm{M}^{+}-\mathrm{PhC}_{2} \mathrm{H}_{5} \mathrm{~N}, 9\right), 260$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}, 21\right], 229 \quad\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, ~ 98\right], 215$ [$\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}, 19\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 100\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 69\right), 106$ ($\mathrm{PhMeN}, 17$), $91\left(\mathrm{PhCH}_{2}, 70\right)$ and $77(\mathrm{Ph}, 45)$.

NOE Difference Experiments on anti,anti- and anti,syn-1-Amino-4-diphenylphosphinoyl-6-methyl-1-phenylheptan-3-ol 6 . -Isomer A. Experiments were performed on the mixture of diastereoisomers. Irradiation at $\delta 3.8(\mathrm{NCH})$ gave enhancements at 8.0-7.0 (unassigned aromatic protons, mostly negative NOEs), 4.2(OCH), $2.1\left(2-H_{A} H_{B}\right), 1.8\left(2-\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 0.8\left(\mathrm{CMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$, negative NOE), and $0.7\left(\mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right.$, negative NOE). Irradiation at $\delta 4.2(\mathrm{OCH})$ gave enhancements at 8.0-7.0 (unassigned aromatic protons), $3.8(\mathrm{NCH}), 2.7(\mathrm{PCH}), 2.1\left(2-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.8(2-$ $\left.\mathrm{H}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.7\left(\mathrm{PCCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.6\left(\mathrm{PCCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 0.8\left(\mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.7\left(\mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right)$.
Isomer B. Irradiation at $\delta 4.1(\mathrm{OCH})$ gave enhancements at δ 8.0-7.0 (unassigned aromatic protons, mostly small NOEs), 4.4 (NCH , negative NOE), $2.5(\mathrm{PCH}), 2.0\left(2-\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right.$, positive NOE to the lower-field proton and negative NOE to the higher-field proton), $0.8\left(\mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$ and $0.7\left(\mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right)$. Irradiation at δ $4.4(\mathrm{NCH})$ gave enhancements at $\delta 8.0-7.0$ (unassigned aromatic protons, mostly small NOEs), 4.1 (OCH), 2.0 (2$\left.\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 0.8\left(\mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$, small NOE) and $0.7\left(\mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right.$, small NOE).
($1 \mathrm{R}^{*}, 3 \mathrm{~S}^{*}, 4 \mathrm{R}^{*}$)- and ($1 \mathrm{~S}^{*}, 3 \mathrm{~S}^{*}, 4 \mathrm{R}^{*}$)-1-Amino-4-diphenyl-phosphinoyl-6-methyl-1-phenylheptan-3-ols 7 f .-By the above method, $\mathrm{NaBH}_{4}(70 \mathrm{mg}, 1.8 \mathrm{mmol})$, syn-5-(1^{\prime}-diphenyl-phosphinoyl-3'-methylbutyl)-3-phenyl-4,5-dihydroisoxazole 5 u $(150 \mathrm{mg}, 0.36 \mathrm{mmol})$ and $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(189 \mathrm{mg}, 0.80 \mathrm{mmol})$ gave the amino alcohols 7f, as a $2: 1$ mixture of the diastereoisumers \mathbf{A} and B, respectively, as needles ($135 \mathrm{mg}, 89 \%$), m.p. $112-116^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 421.2211 . \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{NO}_{2}$ P requires M, 421.2170); R_{F} $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{NH}_{3}, 100: 10: 2\right) 0.23$ and $0.16 ; v_{\text {max }} / \mathrm{cm}^{-1}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3520$ and $3410\left(\mathrm{NH}_{2}\right), 3500-3000(\mathrm{OH}), 2990-2800$ (CH), 1605 and $1590(\mathrm{Ph}), 1365(\mathrm{P}-\mathrm{Ph}), 1170-1160(\mathrm{P}=\mathrm{O})$ and $1120(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 0.53$ ($3 \mathrm{HA}, \mathrm{d}, J 6.5$, $\left.\mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.56\left(3 \mathrm{HB}, \mathrm{d}, J 6.5, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 0.72(3 \mathrm{HA}, \mathrm{d}, J 6.5$, $\mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}$), $0.75\left(3 \mathrm{HB}, \mathrm{d}, J 6.5, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right), 1.0-1.1(1 \mathrm{HA}$ and B, m, $\mathrm{Me}_{2} \mathrm{CH}$), 1.4-1.8 (3 HA and B, m, 3 H , of $2 \times \mathrm{CH}_{2}$), 2.02.1 (1 HA and $\mathrm{B}, \mathrm{m}, 1 \mathrm{H}$ of $2 \times \mathrm{CH}_{2}$), 2.2-2.35(1 HA and B, m, PCH), 4.00 ($1 \mathrm{HB}, \mathrm{t}, J 6.7, \mathrm{NCH}$), 4.14 ($1 \mathrm{HB}, \mathrm{m}, \mathrm{OCH}$), 4.19 (1 HA, dd, $J 3.9$ and 8.6, NCH), 4.26 ($1 \mathrm{HA}, \mathrm{m}, \mathrm{OCH}$), 7.19-7.26 (2 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and PhCN), 7.41-7.53 (8 HA and B, m,
$\mathrm{Ph}_{2} \mathrm{PO}$ and PhCN) and 7.68-7.82 (5 HA and $\mathrm{B}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and $\mathrm{PhCN}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 22.0\left(\mathrm{BCMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right), 22.2\left(\mathrm{ACMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$, $22.4\left(\mathbf{A C M e}_{\mathrm{A}} M e M e_{\mathrm{B}}\right), 22.6\left(\mathbf{B C M e}_{\mathrm{A}} M e_{\mathbf{B}}\right), 27.1(\mathrm{~d}, J c a .7$, $\mathbf{B M e}_{2} \mathbf{C H}$), $27.4\left(\mathrm{~d}, J 6, \mathbf{A M e}_{2} \mathbf{C H}\right), 31.0\left(\mathbf{A C H}_{2}\right), 31.4\left(\mathbf{B C H}_{2}\right)$, 40.4 (d, J 69, APCH), 41.3 (d, J 69, BPCH), $43.7\left(\mathrm{CH}_{2}\right), 43.8$ $\left(\mathrm{CH}_{2}\right), 52.5$ (ANCH), 55.2 (BNCH), 67.2 (AOCH), 69.7 (BOCH), 126.1, 126.2, 127.0, 127.1, 127.4, 128.4, 128.5, 128.6, $128.8,128.9,130.9,131.0,131.1,131.2,131.7,131.9,131.9$, 133.4, 145.4 (BNC- $C_{\text {ary }}$) and $169.6\left(\mathrm{ANC}-C_{\text {ary }}\right) ; m / z 421\left(\mathrm{M}^{+}\right.$, 2%), $316\left(\mathrm{M}^{+}-\mathrm{PhCH}_{2} \mathrm{~N}, 6\right), 301\left(\mathrm{M}^{+}-\mathrm{PhC}_{2} \mathrm{H}_{5} \mathrm{~N}, 6\right), 372$ $\begin{array}{llll}{\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{5} \mathrm{H}_{11}, 6\right],} & 260 \quad\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}, 16\right], & 229\end{array}$ $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{4}, 60\right], 202\left(\mathrm{Ph}_{2} \mathrm{POH}, 71\right), 201\left(\mathrm{Ph}_{2} \mathrm{PO}, 100\right), 106$ $\left(\mathrm{PhCH}_{3} \mathrm{~N}, 50\right), 105\left(\mathrm{PhCH}_{2} \mathrm{~N}, 58\right)$ and $77(\mathrm{Ph}, 41)$.

Methods for Performing Horner-Wittig Eliminations on 1 mmol of Material.-Method A. NaH (50% dispersion in oil; ca. $1.5 \mathrm{mmol}, 72 \mathrm{mg}$) was added to a stirred solution of the β hydroxydiphenylphosphine oxide (1 mmol) in DMF (ca. 15 cm^{3}) under Ar at room temp., and the mixture stirred overnight. $\mathrm{Et}_{2} \mathrm{O}\left(100 \mathrm{~cm}^{3}\right)$ was added to the mixture which was then washed with $2.2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ aqueous $\mathrm{NaOH}\left(3 \times 100 \mathrm{~cm}^{3}\right)$. The organic layer was then extracted with $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous $\mathrm{HCl}\left(2 \times 75 \mathrm{~cm}^{3}\right)$, and the combined acidic extracts were basified with $0.75 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous NaOH and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 75 \mathrm{~cm}^{3}\right)$. These $\mathrm{Et}_{2} \mathrm{O}$ extracts were combined and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and $10 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(2 \mathrm{mmol}, 0.2 \mathrm{~cm}^{3}\right)$ was added to them; the $\mathrm{Et}_{2} \mathrm{O}$ was then removed under reduced pressure. The remaining water was removed azeotropically using MeCN to give the amine hydrochlorides.

Method B. As method A, but elimination performed at $50^{\circ} \mathrm{C}$ for 1-2 h.

Hept-1-en-4-amine Hydrochloride 8a.-By method A. NaH ($150 \mathrm{mg}, 3 \mathrm{mmol}$) and 4-amino-1-diphenylphosphinoylheptan-$2-\mathrm{ol} 6 \mathrm{a}(700 \mathrm{mg}, 2.11 \mathrm{mmol})$ gave the amine hydrochloride $\mathbf{8 a}$ as a pale brown solid ($141 \mathrm{mg}, 45 \%$), m.p. (EtOAc) $130-131^{\circ} \mathrm{C}$ (Found: $\mathrm{MH}^{+}, 114.1278 . \mathrm{C}_{7} \mathrm{H}_{15} \mathrm{~N}$ requires $\mathrm{MH}^{+}, 114.1282$); $v_{\max } / \mathrm{cm}^{-1}$ (Nujol mull) 3190-2720(CH), 1605 (C=C), 1515,1460 and 1380 (alkyl chain) and $720(\mathrm{CH}=\mathrm{CH}) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 0.98$ (3 $\mathrm{H}, \mathrm{t}, J 7.1, \mathrm{Me}), 1.29-1.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{MeCH}_{2}\right), 1.56-1.8(2 \mathrm{H}, \mathrm{m}$, MeCCH_{2}), 2.30-2.51 ($2 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CCH}_{2}$), $3.23(1 \mathrm{H}$, quintet, J 6.4, NCH), $5.24\left(1 \mathrm{H}, \mathrm{dd}, J 1.4\right.$ and $\left.11.2, \mathrm{CH}=\mathrm{C} H_{\text {cis }} \mathrm{H}_{\text {trans }}\right), 5.25$ ($1 \mathrm{H}, \mathrm{dd}, J 1.4$ and $17.3, \mathrm{CH}=\mathrm{CH}_{\text {cis }} H_{\text {trans }}$) and $5.82(1 \mathrm{H}$, tdd, J 7.2, 9.8 and 17.3, $\mathrm{CH}=\mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 14.1$ (Me), 19.4 $\left(\mathrm{CH}_{2}\right), 35.4\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{2}\right), 52.2(\mathrm{NCH}), 120.4\left(\mathrm{HC}=\mathrm{CH}_{22}\right)$, and $133.3\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$; $m / z 114\left(\mathrm{MH}^{+}, 0.2 \%\right), 82\left(\mathrm{C}_{5} \mathrm{H}_{10}, 2\right), 72$ $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}, 100\right), 70\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}, 38\right)$ and $55\left(\mathrm{C}_{4} \mathrm{H}_{7}, 12\right)$.

1-Phenylbut-3-enylamine Hydrochloride 8b.-By method A. $\mathrm{NaH}(20 \mathrm{mg}, 0.4 \mathrm{mmol})$ and 4 -amino-1-diphenylphosphinoyl-4-phenylbutan-2-ol $6 \mathrm{~b}(107 \mathrm{mg}, 0.29 \mathrm{mmol})$ gave the amine hydrochloride $\mathbf{8 b}$ as a brown oil ($15 \mathrm{mg}, 28 \%$), which could not be purified. The amine hydrochloride $\mathbf{8 b}$ was, therefore, characterised impure (Found: $\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{5}$, 106.0661. $\mathrm{C}_{10^{-}}$ $\mathrm{H}_{13} \mathrm{~N}$ requires $\left.M-\mathrm{C}_{3} \mathrm{H}_{5}, 106.0657\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 3700 and $3600\left(\mathrm{NH}_{2}\right), 3040-2700(\mathrm{CH}), 1690(\mathrm{C}=\mathrm{C}), 1605$ and $1510(\mathrm{Ph})$ and $925(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 2.73(2 \mathrm{H}, \mathrm{dt}, J 1.0$ and $7.2, \mathrm{PhCCH}_{2}$), $4.34(1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{NCH}), 5.15(1 \mathrm{H}, \mathrm{dd}, J 1.7$ and $9.9, \mathrm{CH}=\mathrm{CH}_{\text {trans }} H_{c i s}$), $5.19(1 \mathrm{H}, \mathrm{qd}, J 1.4$ and 17.0 , $\mathrm{CH}=\mathrm{C} H_{\text {trans }} \mathrm{H}_{\text {cis }}$), 5.69 (1 H , tdd, J 7.0, 10.1 and 17.1, $\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right)$ and 7.42-7.47 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $m / z 148\left(\mathrm{MH}^{+}, 0.3 \%\right)$, $147\left(\mathrm{M}^{+}, 0.2\right), 131\left(\mathrm{M}^{+}-\mathrm{NH}_{2}, 1\right), 121\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{2}, 0.6\right), 106$ $\left(\mathrm{PhCH}_{3} \mathrm{~N}, 100\right)$ and $77(\mathrm{Ph}, 20)$.
(E)-Oct-6-en-4-amine Hydrochloride 8c.-By method B. NaH $(72 \mathrm{mg}, 1.4 \mathrm{mmol})$ and anti,anti- and anti,syn-5-amino-2-diphenylphosphinoyloctan-3-ol $6 \mathrm{c}(278 \mathrm{mg}, 0.81 \mathrm{mmol})$ gave the amine hydrochloride $8 \mathrm{c}(97 \mathrm{mg}, 73.5 \%)$ as whitish needles,
m.p. (EtOAc) $152-154^{\circ} \mathrm{C}$ (Found: MH^{+}, 128.1427. $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{~N}$ requires $\left.M \mathrm{H}^{+}, 128.1439\right) ; v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 3280-2700(\mathrm{C}-\mathrm{H})$, $1600(\mathrm{C}=\mathrm{C}), 1510,1460$ and 1380 (alkyl chain), $770(\mathrm{CH}=\mathrm{CH}$ trans $) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) 1.09\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{2} \mathrm{Me}\right), 1.51-$ $1.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{MeCH}_{2}\right), 1.66-1.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{MeCCH}_{2}\right), 1.83(3 \mathrm{H}$, $\mathrm{d}, J 6.3, \mathrm{CH} M e), 2.40\left(1 \mathrm{H}, \mathrm{td}, J 7.2\right.$ and $\left.14.2, \mathrm{C}=\mathrm{CCH} \mathrm{A}_{\mathrm{A}}\right), 2.50$ $\left(1 \mathrm{H}, \mathrm{td}, J 6.5\right.$ and $\left.14.0, \mathrm{C}=\mathrm{CCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.30(1 \mathrm{H}$, quintet, $J 6.4$, $\mathrm{NCH}), 5.55(1 \mathrm{H}$, qtd, $J 1.3,7.2$ and $15.2, \mathrm{MeC}=\mathrm{C} H)$ and 5.79 ($1 \mathrm{H}, \mathrm{qd}, J 6.5$ and $15.2, \mathrm{MeCH}=\mathrm{C}$); $\delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 14.1(\mathrm{Me}), 18.2$ (Me), $19.5\left(\mathrm{CH}_{2}\right), 35.5\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 52.6(\mathrm{NCH}), 125.5$ $(\mathrm{C}=\mathrm{C})$ and $132.0(\mathrm{C}=\mathrm{C}) ; m / z 128\left(\mathrm{MH}^{+}, 0.2\right), 72\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}, 100\right)$ and $55\left(\mathrm{C}_{4} \mathrm{H}_{7}, 13\right)$.
(E)-1-Phenylpent-3-en-1-amine Hydrochloride 8d.-By method B. NaH ($80 \mathrm{mg}, 1.7 \mathrm{mmol}$) and anti,anti- and anti,syn-1-amino-4-diphenylphosphinoyl-1-phenylpentan-3-ol 6d (227 $\mathrm{mg}, 0.60 \mathrm{mmol}$) gave the amine hydrochloride 8 d as a yellow and white solid ($98 \mathrm{mg}, 81 \%$), recrystallised from EtOAc -hexane as needles (yield not recorded), m.p. ${ }^{168-171{ }^{\circ} \mathrm{C} \text { (Found: C, 66.8; }}$ $\mathrm{H}, 8.3 ; \mathrm{N}, 6.95 . \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N} \cdot \mathrm{HCl}$ requires $\mathrm{C}, 66.8 ; \mathrm{H}, 8.2 ; \mathrm{N}$, 7.1%); $v_{\max } / \mathrm{cm}^{-1}$ (Nujol mull) 3180-2780(CH), $1670(\mathrm{C}=\mathrm{C})$, 1600,1565 and $1510\left(\mathrm{Ph}\right.$ and $\left.\mathrm{NH}_{3}{ }^{+}\right), 965(\mathrm{CH}=\mathrm{CH}$ trans $)$ and 765 and $700(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 1.64(3 \mathrm{H}, \mathrm{dd}, J 1.2$ and $6.4, \mathrm{Me})$, $2.65\left(2 \mathrm{H}, 2\right.$ nd order $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 4.27(1 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{NCH}), 5.33(1$ H , qtd, $J 1.3,7.3$ and $14.8, \mathrm{MeCH}=\mathrm{CH}), 5.63(1 \mathrm{H}$, tqd, $J 1.1$, 6.4 and $14.1, \mathrm{MeCH})$ and $7.36-7.47(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ $18.2(\mathrm{Me}), 39.0\left(\mathrm{CH}_{2}\right), 56.7(\mathrm{NCH}), 125.6(\mathrm{MeC}), 128.3,130.1$, $130.2,131.8$ and 138.2 (ipso C); $m / z 106\left(\mathrm{PhCH}_{3} \mathrm{~N}, 100 \%\right)$, 91 $\left(\mathrm{PhCH}_{2}, 30\right)$ and $77(\mathrm{Ph}, 32)$.
(Z)-1-Phenylpent-3-enylamine Hydrochloride 9a.--By method B. NaH ($48 \mathrm{mg}, 0.9 \mathrm{mmol}$) and syn,anti- and syn,syn-1-amino-4-diphenylphosphinoyl-1-phenylpentan-3-ol 7d ($290 \mathrm{mg}, 0.73$ $\mathrm{mmol})$ gave the amine hydrochloride $9 \mathrm{a}(109 \mathrm{mg}, 74 \%$) as pale yellow needles, almost pure by NMR analysis. Recrystallisation from EtOAc gave needles ($27 \mathrm{mg}, 18 \%$), m.p. $176-179^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 3600-3400$ and $3250-3170(\mathrm{NH}), 3170-2750$ $(\mathrm{CH}), 1660(\mathrm{C}=\mathrm{C}), 1600$ and $1510\left(\mathrm{Ph}^{2}\right.$ and $\left.\mathrm{NH}_{3}{ }^{+}\right), 1455$ and 1380 (alkyl chain), $755(\mathrm{Ph})$ and $700(\mathrm{CH}=\mathrm{CH}$ cis $) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ $1.56(3 \mathrm{H}, \mathrm{ddd}, J 0.8,1.6$ and $7.0, \mathrm{Me}), 2.68(1 \mathrm{H}, \mathrm{ddd}, J$ small, $c a$. 7.7 and $\left.c a .14 .5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.80(1 \mathrm{H}$, ddd, $J 0.5,7.0$ and 14.6 , $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right), 4.29(1 \mathrm{H}$, br t $, J c a .7 .5, \mathrm{NCH}), 5.25(1 \mathrm{H}, \mathrm{qtd}, J 1.8,7.3$ and $10.8, \mathrm{MeC}=\mathrm{CH}), 5.61(1 \mathrm{H}, \mathrm{tqd}, J 1.5,6.9$ and $10.8(\mathrm{MeCH})$ and 7.37-7.56(5 H, m, Ph); $\delta_{\mathrm{c}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 13.1(\mathrm{Me}), 33.1\left(\mathrm{CH}_{2}\right)$, $56.6(\mathrm{NCH}), 124.5(\mathrm{MeC}), 128.4,129.6,130.2$ and 138.1 (ipso C); $m / z 149\left(\mathrm{MH}^{+}-\mathrm{CH}, 1.9 \%\right), 106\left(\mathrm{PhCH}_{3} \mathrm{~N}, 100 \%\right)$ and 77 (Ph, 18).
(E)-6-Methyl-1-phenylhept-3-enylamine Hydrochloride 8f.By method B. $\mathrm{NaH}(38 \mathrm{mg}, 0.7 \mathrm{mmol})$ and anti,anti- and anti,-syn-1-amino-4-diphenylphosphinoyl-6-methyl-1-phenylhep-\tan-3-ol $6 \mathrm{f}(233 \mathrm{mg}, 0.55 \mathrm{mmol})$ gave the amine hydrochloride $\mathbf{8 f}$ $(98 \mathrm{mg}, 74 \%)$ as very pale yellow plates, m.p. $169-172^{\circ} \mathrm{C}$ (Found: $\mathrm{MH}^{+}, 204.1742 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}$ requires $M \mathrm{H}^{+}, 204.1752$); $v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CDCl}_{3}\right) 3560-3300(\mathrm{NH}), 3270-2750(\mathrm{CH}), 1605$ ($\mathrm{C}=\mathrm{C}$ and Ph), 1515,1460 and 1380 (alkyl chain), $975(\mathrm{CH}=\mathrm{CH}$ trans $)$ and $700(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 0.76\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}\right)$,
$0.80\left(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe}_{\mathrm{A}} M e_{\mathrm{B}}\right), 1.51\left(1 \mathrm{H}\right.$, nonet, $\left.\mathrm{C} H \mathrm{Me}_{2}\right), 1.84(2$ $\mathrm{H}, 2$ nd order $\left.\mathrm{m}, \mathrm{Me}_{2} \mathrm{CHCH}_{2}\right), 2.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCCH}_{2}\right), 4.27(1 \mathrm{H}$, dd, $J 7.1$ and $8.0, \mathrm{NCH}), 5.25(1 \mathrm{H}, \mathrm{td}, J 7.1$ and $15.2, \mathrm{C}=\mathrm{CH})$, $5.54(1 \mathrm{H}, \mathrm{td}, J 7.1$ and $15.3, \mathrm{C}=\mathrm{CH})$ and $7.39-7.48(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $\delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 22.4(\mathrm{Me}), 22.6(\mathrm{Me}), 29.3\left(\mathrm{Me}_{2} \mathrm{CH}\right), 38.9\left(\mathrm{CH}_{2}\right)$, $42.9\left(\mathrm{CH}_{2}\right), 56.8(\mathrm{NCH}), 125.4(\mathrm{C}=\mathrm{C}$ or Ph$), 128.4(\mathrm{C}=\mathrm{C}$ or Ph$)$, $130.2(\mathrm{C}=\mathrm{C}$ or Ph$), 136.0(\mathrm{C}=\mathrm{C}$ or Ph$)$ and 138.0 (ipso C$) ; m / z$ $204\left(\mathrm{MH}^{+}, 0.03 \%\right), 120\left(\mathrm{PhC}_{2} \mathrm{H}_{5} \mathrm{~N}, 0.7\right)$ and $106\left(\mathrm{PhCH}_{3} \mathrm{~N}\right.$, 100).

References

1 R. S. Garigipati, D. M. Tschaen and S. M. Weinreb, J. Am. Chem. Soc., 1990, 112, 3475.
2 S. M. Weinreb, Acc. Chem. Res., 1988, 21, 313.
3 See, for example, Y. Yamamoto, S. Nishii, K. Maruyama, T. Komatsu and W. Ito, J. Am. Chem. Soc., 1986, 108, 7778; R. W. Hoffmann and A. Endesfelder, Liebigs Ann. Chem., 1987, 215; G. E. Keck and E. J. Enholm, J. Org. Chem., 1985, 50, 146.

4 Y. Yamamoto, T. Komatsu and K. Maruyama, J. Org. Chem., 1985, 50, 3115.
5 Preliminary communication: S. K. Armstrong, E. W. Collington, A. Naylor and S. Warren, Tetrahedron Lett., 1991, 32, 4171.

6 A. Padwa, Comprehensive Organic Synthesis, eds. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, vol. 4, p. 1069; 1,3-Dipolar Cycloaddition Chemistry, ed. A. Padwa, Wiley-Interscience, New York, 1984, two volumes.
7 M. Christl and R. Huisgen, Chem. Ber., 1973, 106, 3345.
8 T. Mukaiyama and T. Hoshino, J. Am. Chem. Soc., 1960, 82, 5339; J. E. McMurry, Org. Synth., 1973, 53, 59.

9 A. Hassner and K. M. L. Rai, Synthesis, 1989, 57.
10 D. R. Borthakur and J. S. Sandhu, J. Chem. Soc., Chem. Commun., 1988, 1444.
11 The X-ray crystal structure of compound 4 r was performed by R. B. Lamont of Glaxo Group Research at Greenford and that of compound $4 t$ by M. Doyle and P. R. Raithby at Cambridge.
12 (a) K. N. Houk, H.-Y. Duh, Y.-D. Wu and S. R. Moses, J. Am. Chem. Soc., 1986, 108, 2754; see also (b) K. N. Houk, S. R. Moses, Y.-D. Wu, N. G. Rondan, V. Jäger, R. Schohe and F. R. Fronczek, J. Am. Chem. Soc., 1984, 106, 3880.
13 D. P. Curran and S. A. Gothe, Tetrahedron, 1988, 44, 3945; M. De Amici, C. De Micheli, A. Ortisi, G. Gatti, R. Gandolfi and L. Toma, J. Org. Chem., 1989, 54, 793.

14 See, for example: A. P. Kozikowski and A. K. Ghosh, J. Org. Chem., 1984, 49, 2762; V. Jäger and R. Schohe, Tetrahedron, 1984, 40, 2199.
15 R. Annunziata, M. Cinquini, F. Cozzi, A. Gilardi and A. Restelli, J. Chem. Soc., Perkin Trans. 1, 1985, 2289.

16 Dr. J. M. Brown, personal communication; cf R. W. Taft, D. Gurka, L. Joris, P. von R. Schleyer and J. W. Rakshys, J. Am. Chem. Soc., 1969, 91, 4801.
17 R. C. Wade, D. G. Holah, A N. Hughes and B. C. Hui, Catal. Rev., Sci. Eng., 1976, 14, 211, and references therein; S. G. Kim and J. R. Brock, J. Colloid and Interface Sci., 1987, 116, 431.

18 A. D. Buss and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1985, 2307.

19 T.-L. Ho and G. A. Olah, J. Org. Chem., 1977, 42, 3097.
20 W. D. Emmons and J. P. Freeman, J. Org. Chem., 1957, 22, 456.
21 D. W. Chasar, Synthesis, 1982, 841.
Paper 3/00942D
Received 16th February 1993
Accepted 2nd March 1993

[^0]: \dagger Although the term isoxazolines has been used throughout the Discussion section for convenience, such compounds have been named in the Experimental section according to the IUPAC rules of nomenclature for organic compounds as 4,5-dihydroisoxazoles.

