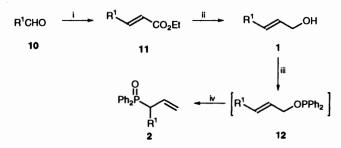

## A New Method for Stereoselective Homoallylic Amine Synthesis

Susan K. Armstrong,<sup>a</sup> Eric W. Collington,<sup>b</sup> Julian G. Knight,<sup>a</sup> Alan Naylor<sup>b</sup> and Stuart Warren<sup>a,\*</sup>

<sup>a</sup> University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW
<sup>b</sup> Glaxo Group Research, Park Road, Ware, Herts SG12 0DP


Nitrile oxide cycloadditions to readily available allylic diphenylphosphine oxides 2 proceeded regioselectively and stereoselectively to give 5-(1'-diphenylphosphinoylalkyl)isoxazolines 4 and 5. These heterocycles were reduced to  $\delta$ -amino- $\beta$ -hydroxyalkyldiphenylphosphine oxides 6 and 7 using a combination of sodium borohydride and nickel(II) chloride. Stereospecific elimination of diphenylphosphinic acid from the reduction products using sodium hydride in *N*,*N*-dimethylformamide gave homoallylic primary amines 8 and 9 of defined stereochemistry.

Homoallylic amines such as 8 and 9 form structural units in a variety of natural products, *e.g.* actinobolin.<sup>1</sup> They have also been used as synthetic precursors to natural products, including the sphingosine bases.<sup>2</sup> There are two main synthetic routes to homoallylic amines in the literature: the addition of allyl metal reagents to imines,<sup>3,4</sup> and Weinreb's hetero-Diels-Alder approach.<sup>1,2</sup> The first, and more widely applied, of these is generally used to make terminal alkenes,<sup>3</sup> although *cis*-1,2-disubstituted alkenes are also available.<sup>4</sup> The second route is more versatile,<sup>2</sup> but neither method gives direct access to unprotected primary homoallylic amines. Our new synthesis <sup>5</sup> converts allylic alcohols 1 in four steps, as outlined in Scheme 1, into the longer-chain homoallylic amines 8 and 9.

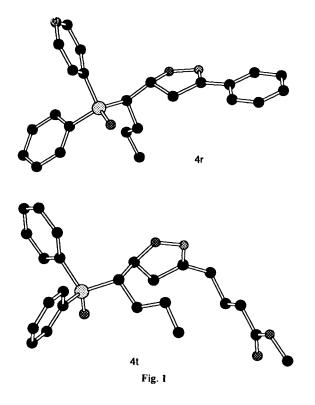


The allylic alcohol starting materials 1 were efficiently synthesised, where necessary, from aldehydes 10 via Horner– Emmons reaction with triethyl phosphonoacetate, and Bu<sup>i</sup><sub>2</sub>AlH

(DIBAL) reduction of the resulting  $\alpha,\beta$ -unsaturated esters 11. Treatment of the alcohols 1 with chlorodiphenylphosphine and pyridine in diethyl ether gave alkyl diphenylphosphinites 12. These were not isolated, but the ether solution was filtered to remove pyridinium chloride and evaporated to dryness under an inert atmosphere. Allylic diphenylphosphine oxides 2 were then obtained in moderate to good yields via a [2,3] sigmatropic Arbuzov rearrangement, accomplished by heating alkyl diphenylphosphinites 12 to reflux overnight in toluene (Scheme 2).



Scheme 2 Reagents and conditions: i,  $(EtO)_2P(O)CH_2CO_2Et, 80-95\%$ ; ii,  $(Bui)_2AlH$ ; iii,  $Ph_2PCl$ , pyridine,  $Et_2O$ ; iv, toluene, reflux, 17 h, 26– 91% over 2 or 3 steps


The carbon chain elongation was achieved by 1.3-dipolar cycloaddition of nitrile oxides <sup>6</sup> 3 to alkenes 2. As expected for a monosubstituted, moderately electron-rich double bond, these cycloadditions were totally regioselective, giving exclusively 3,5disubstituted isoxazolines 4 and 5.† Several methods were investigated for in situ nitrile oxide generation, including the treatment of chloraldoximes with triethylamine,<sup>7</sup> the action of phenyl isocyanate or POCl<sub>3</sub> on nitroalkanes,<sup>8</sup> and the action of chloramine-T on aldoximes.9 The best conditions proved to be aqueous NaOCl (bleach) over a dichloromethane solution of the alkene 2 and an aldoxime as the nitrile oxide precursor. Even under these conditions, the cycloadditions were very slow, typically requiring 1 to 3 weeks for completion. Sonicating the reaction mixture in an ultrasound washing-up bath gave a dramatic, if unexplained, acceleration: under sonication, most reactions reached completion within a few hours or days. Ultrasound has been used to accelerate nitrone cycloadditions.<sup>10</sup> However, if the allylic R<sup>1</sup> substituent in 2 was too large

<sup>†</sup> Although the term isoxazolines has been used throughout the Discussion section for convenience, such compounds have been named in the Experimental section according to the IUPAC rules of nomenclature for organic compounds as 4,5-dihydroisoxazoles.

Results of nitrile oxide cycloadditions

| Alkene $2, \mathbf{R}^1$ | Nitrile oxide<br>3, R <sup>2</sup>                     | Method(s) <sup>a</sup> | 4,5-Dihydroisoxazoles<br>4, 5 | Yield (%)       | Ratio<br>anti-4: syn-5 <sup>b</sup> |
|--------------------------|--------------------------------------------------------|------------------------|-------------------------------|-----------------|-------------------------------------|
| <br>2a, H                | <b>3a</b> , Et                                         | C (H)                  | 4 or 5a                       | 67° (71°)       | _                                   |
| 2a                       | <b>3b</b> , Pr                                         | Α                      | 4 or 5b                       | 96              | _                                   |
| 2a                       | 3c, Hexyl                                              | Α                      | <b>4</b> or <b>5</b> c        | 95              | ~                                   |
| 2a                       | $3d, C_{11}H_{23}$                                     | Ε                      | 4 or 5d                       | 50              | -                                   |
| 2a                       | <b>3e</b> , Ph                                         | A (B)                  | 4 or 5e                       | 55 (62)         | _                                   |
| 2b, Me                   | 3f, Me                                                 | Α                      | 4f                            | 10 <sup>°</sup> | d                                   |
| 2b                       | 3a                                                     | С                      | 4g, 5g                        | 54 °            | 84:16                               |
| 2b                       | 3b                                                     | B (D)                  | 4h, 5h                        | 84 (41 °)       | 80:20 (65:35)                       |
| 2b                       | 3c                                                     | A                      | 4i, 5i                        | '10 <b>7'</b>   | 71:29                               |
| 2ь                       | 3d                                                     | A (E)                  | 4j, 5j                        | 66° (53)        | 80:20 (80:20)                       |
| 2b                       | 3e                                                     | A (B)                  | 4k, 5k                        | 93 (93)         | 78:22 (84:16)                       |
| 2ь                       | $3g, CO_2Et$                                           | F                      | 41, 51                        | 44 °            | 80:20                               |
| 2ь                       | $3h$ , $(CH_2)_2CO_2Me$                                | G                      | 4m, 5m                        | 74 <sup>c</sup> | 83:17                               |
| 2b                       | 3i, (CH <sub>2</sub> ) <sub>3</sub> CO <sub>2</sub> Me | Α                      | 4n, 5n                        | 66 <i>°</i>     | 91:9                                |
| 2c, Et                   | 3d                                                     | Α                      | 40, 50                        | 22 <sup>c</sup> | 78:22                               |
| 2c                       | <b>3</b> i                                             | Α                      | 4p, 5p                        | 20 °            | 67:33                               |
| 2d, Pr                   | 3d                                                     | Α                      | 4q, 5q                        | 3 <b>3</b> °    | 72:28                               |
| 2d                       | 3e                                                     | Α                      | 4r, 5r                        | 7 <b>4</b> °    | 85:15                               |
| 2d                       | 3h                                                     | G                      | 4s, 5s                        | 40 <sup>c</sup> | 85:15                               |
| 2d                       | 3i                                                     | Α                      | 4t, 5t                        | 24°             | 72:28                               |
| 2e, Bu <sup>i</sup>      | 3e                                                     | A (B)                  | 4u, 5u                        | 50° (55)°       | 84:16 (84:16)                       |
|                          |                                                        |                        |                               |                 |                                     |

<sup>a</sup> For detailed methods, see Experimental section. A = oxime + bleach, stirred; B = oxime + bleach, sonicated;  $C = \text{oxime} + \text{Cl}_2$  gas; D = oxime + chloramine-T; E = oxime + NBS;  $F = \text{chloroxime} + \text{Et}_3$ N; G = nitroalkane + PhNCO; H = modification of method C. <sup>b</sup> Determined by <sup>1</sup>H NMR on crude reaction mixture and/or by product isolation. <sup>c</sup> Some unchanged alkene 2 isolated also. <sup>d</sup> None of minor isomer isolated.

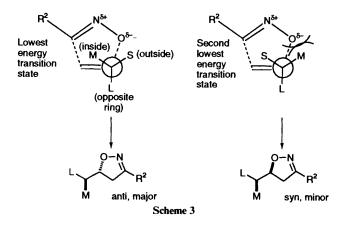


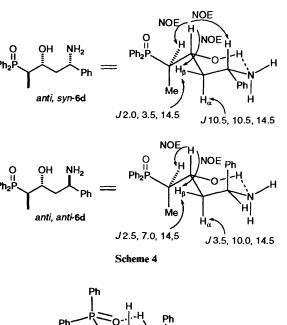
(e.g.  $R^1 = Pr^i$ , Ph, or cyclopentyl), no cycloadducts were obtained under any conditions.

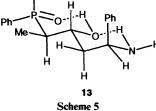
The cycloadditions were moderately stereoselective under any of the conditions tested (see Table 1). Generally, the conditions used had very little effect on the selectivity. In almost every case, the diastereoisomeric products could be separated by flash column chromatography, and purified further by recrystallisation if necessary. The cycloadducts 41 and 51 from alkene 2b ( $R^1 = Me$ ) and nitrile oxide 3g ( $R^2 = EtO_2C$ ) could not be separated, however, so this nitrile oxide was used only once. The relative stereochemistries of the cycloadducts were established by NMR correlations to *anti*-4r and *anti*-4t, whose structures were determined by single-crystal X-ray analysis (Fig. 1).<sup>11</sup> The NMR correlations were based not on chemical shifts, which were less reliable, but on the multiplicities of the ring protons. In particular, the diastereotopic protons on C-4 of the ring appear as two double doublets in the major, *anti*, isoxazoline, and often (but not always) as one doublet in the minor, *syn* isoxazoline (see Experimental section). The multiplicities are clearly governed by the relative sizes of different coupling constants, which, in turn, depend on the conformation of the molecule. It is, therefore, not unreasonable that the relative stereochemistry should be reflected in the coupling constants of the ring protons.

In every case, the anti-cycloadduct was the major product. This is consistent with the transition state models of Houk and co-workers (Scheme 3).<sup>12</sup> As other groups have observed,<sup>13</sup> the ground-state conformations of the anti-isoxazolines 4r and 4t, determined by X-ray analysis, closely resemble the favoured transition-state geometry calculated by Houk. These transitionstate models also account for the general observation that the nitrile oxide substituent R<sup>2</sup> has little effect on the stereoselectivity of nitrile oxide cycloadditions.<sup>14</sup> Increasing the steric bulk of the allylic substituent R<sup>1</sup> on the alkene would be expected from these models to improve the stereoselectivity, since a larger alkyl group should show a stronger preference for the 'inside' position over the 'outside' one. Neither of these trends is shown by the data in Table 1. Increasing the size of the allylic substituent  $R^{1}$ in alkenes 2 from methyl through ethyl and propyl to isobutyl usually reduced the selectivity of the cycloadditions slightly, whereas changing the nitrile oxide substituent often had more effect on the selectivity than changing the allylic substituent. We cannot explain these observations. We assume that the very bulky diphenylphosphinoyl substituent can only occupy the position opposite to the developing ring in Houk's transition state, leaving the R<sup>1</sup> group and the allylic hydrogen to fill the 'inside' and 'outside' positions. A branched allylic substituent such as isopropyl or phenyl is probably too bulky to occupy either of these positions: hence the unreactivity of these alkenes.

The isoxazolines 4 and 5 proved unexpectedly resistant to reduction by a variety of reducing agents, including sodium borohydride, DIBAL, alane, lithium aluminium hydride, Na(MeOCH<sub>2</sub>CH<sub>2</sub>O)<sub>2</sub>AlH<sub>2</sub> (Red-Al), sodium in ethanol, and hydrogenation over Raney nickel, palladium, rhodium, or



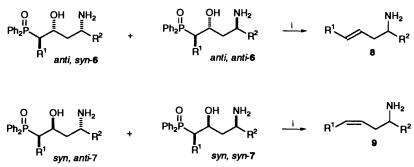


Table 2 Results of reductions using NaBH<sub>4</sub> and NiCl<sub>2</sub>·6H<sub>2</sub>O


| 4,5-Dihydroisoxazole<br>4 or 5 | Amino alcohols<br>6 or 7 | % Yield of<br>6 or 7 | Product<br>ratio <sup>4.b</sup> |
|--------------------------------|--------------------------|----------------------|---------------------------------|
| 4 or 5b                        | 6 or 7a                  | 90.5                 | 60:40                           |
| 4 or 5b                        | 6 or 7a                  | c                    | 50:50 <sup>d</sup>              |
| 4 or 5e                        | 6 or 7b                  | 76                   | 71:29                           |
| 4 or 5e                        | 6 or 7b                  |                      | 55:454                          |
| 4h                             | 6c                       | 84                   | 55:45                           |
| 5h                             | 7c                       | 86                   | 66:34                           |
| 4k                             | 6d                       | 85                   | 82:18                           |
| 4k                             | 6d                       | c                    | 83:17°                          |
| 4k                             | 6d                       | c                    | 67:33°                          |
| 5k                             | 7d                       | 84                   | 67:33                           |
| 4r                             | 6e                       | 94                   | 83:17                           |
| 4u                             | 6f                       | 64                   | 71:29                           |
| 5u                             | 7f                       | 89                   | 67:33                           |

<sup>a</sup> Reactions performed at -30 °C unless otherwise stated. <sup>b</sup> Ratios of anti,anti-6 to anti,syn-6 or syn,anti-7 to syn,syn-7. <sup>c</sup> Yield not measured. <sup>d</sup> Reaction performed at room temp. <sup>e</sup> Reaction performed at -78 °C.

platinum oxide. Reduction of 4 and 5 to the amino alcohols 6 and 7, respectively, was achieved cleanly and in high yield by using sodium borohydride with either NiCl<sub>2</sub>·6H<sub>2</sub>O or Co-Cl<sub>2</sub>·6H<sub>2</sub>O.<sup>15</sup> At room temperature the reaction was barely stereoselective, but moderate selectivities could be obtained with the nickel system at -30 °C (see Table 2). Reducing the temperature to -78 °C had almost no further effect on the stereoselectivity, but did introduce a significant induction period for the reaction. This induction period was observed with the cobalt system even at -20 °C, making the nickel system preferable. Although other transition metal salts, notably TiCl<sub>4</sub>, gave better selectivity, the extent of reduction was very low (<12%) unless either Ni<sup>11</sup> or Co<sup>11</sup> was used. Sodium borohydride alone was totally ineffective.

Separation of the diastereoisomeric reduction products was considerably harder than separation of the diastereoisomeric cycloadducts 4 and 5, and total separation was achieved in only one case: anti, anti-6d and anti, syn-6d were completely separated by flash column chromatography. Since the diastereoisomeric amino alcohols anti, anti-6 and anti, syn-6 give the same homoallylic amines 8 after elimination (see below), their separation was not important, and was, therefore, not attempted in many cases. Neither anti, anti-6d nor anti, syn-6d formed crystals suitable for X-ray analysis, but their relative stereochemistries were investigated by NOE studies. Both NMR coupling constants and, to a lesser extent, IR stretching frequencies support the suggestion that these 1,3-amino alcohols adopt a cyclic, hydrogen-bonded conformation (Scheme 4). It has been suggested <sup>16</sup> that in view of the strong hydrogen bonding potential of the phosphine oxide oxygen, a






pseudo-decalin structure such as 13 (for anti,anti-6d) might be more appropriate. This is not consistent with the observed NOEs between OCH and PCH, however. Based on the monocyclic conformation, the NOE data shown in Scheme 4 suggest that the major reduction product was anti,anti-6d, and the minor product anti,syn-6d. These assignments are tentative, however, and related NOE studies on the amino alcohols 6f provided no support for them. If correct, they imply that the major product anti, anti-6d is formed by reduction from the more hindered face of the ring: the hydride is delivered to the face bearing the diphenylphosphinoylalkyl group. This presumably occurs by co-ordination of the reducing agent to the phosphine oxide, but the structure of the reducing agent in these systems is not known.<sup>17</sup>

Stereospecific elimination of diphenylphosphinic acid from the amino alcohols 6 and 7 proceeded as expected under our usual conditions of sodium hydride in N,N-dimethylformamide (DMF).<sup>18</sup> The homoallylic amine products 8 and 9 were best isolated as their hydrochloride salts, although these tended to decompose on attempted recrystallisation. The configuration of the alkene products is decided by the relative stereochemistry of the chiral centres bearing phosphorus and oxygen in the amino alcohols 6 and 7. These chiral centres were formed in the nitrile oxide cycloaddition, and the syn and anti diastereoisomers immediately separated, so that E-8 and Z-9 were formed quite separately. The stereochemistry of the third centre was unimportant in these cases, since in the products 8 and 9 it was the only chiral centre. Thus, both anti, anti- and anti, syn-isomers of the amino alcohols 6 give the same E alkenes 8, while both syn,anti- and syn,syn-isomers of the amino alcohols 7 give the same Z alkenes 9 (Scheme 6). Since the major products of the cycloaddition had anti stereochemistry, the E alkenes were the more readily available by this route.

In summary, we have developed a new route, outlined in Scheme 1, to the homoallylic amines 8 and 9 of defined geometry. The route leads directly to unprotected primary amines, and the E and Z alkenes are produced in different reactions, avoiding the need for isomer separation.



Scheme 6 Reagents and conditions: i, (a) NaH, DMF; (b) HCl,  $H_2O: R = H$ , 28–45%;  $R \neq H$ , 73–81%

## Experimental

Column chromatography was carried out at slightly greater than atmospheric pressure using Merck Kieselgel 60 (230–400 mesh). High performance liquid chromatography was performed using a Dynamax prepacked silica column (21.4 mm i.d.  $\times$  25 cm), with a Gilson model 303 pump operating at 10 ml min<sup>-1</sup> and a Cecil Instruments CE 212A u.v. detection system measuring the absorbance at 254 nm. Thin layer chromatography (TLC) was carried out on commercially available pre-coated plates (Merck silica Kieselgel 60F<sub>254</sub>). All solvents were distilled before use. Tetrahydrofuran (THF) was freshly distilled from potassium using benzophenone radical as an indicator. Dry diethyl ether (Et<sub>2</sub>O) was dried by distillation from calcium hydride. Dimethylformamide (DMF) was dried with, and stored over, activated molecular sieves (4 Å). RT stands for room temperature.

M.p.s were measured on a Reichart hot-stage microscope and are uncorrected. IR spectra were recorded on a Perkin-Elmer 297 grating spectrophotometer. <sup>1</sup>H NMR spectra were recorded on a Varian EM 390 (90 MHz) continuous wave spectrometer or on Bruker WP 80 (80 MHz), WM 250 (250 MHz) and WM 400 (400 MHz) Fourier transform spectrometers. <sup>1</sup>H NMR spectra were recorded at 250 MHz unless otherwise stated. <sup>13</sup>C NMR were recorded on a Bruker WM 400 (100 MHz) spectrometer. Chemical shifts are quoted in parts per million relative to tetramethylsilane ( $\delta$  0.00 ppm) or chloroform ( $\delta$  7.25 ppm) for <sup>1</sup>H spectra, and relative to chloroform ( $\delta$  77.0 ppm) for <sup>13</sup>C spectra. J Values are given in Hz. Mass spectra were recorded on an AEI Kratos MS30 machine using a DS503 data system for high resolution analysis. Microanalyses were carried out using Carlo Erba 1106 or Perkin-Elmer 240 automatic analysers.

Hex-1-en-3-yldiphenylphosphine Oxide 2d.-Chlorodiphenylphosphine (8.1 cm<sup>3</sup>, 45 mmol) in Et<sub>2</sub>O (80 cm<sup>3</sup>) was added slowly to a stirred solution of hex-2-en-1-ol (5.3 cm<sup>3</sup>, 45 mmol) and pyridine (3.6 cm<sup>3</sup>, 45 mmol) in  $Et_2O$  (60 cm<sup>3</sup>) under Ar at 0 °C, and the mixture stirred at RT for 1 h. The mixture was filtered under Ar, and the Et<sub>2</sub>O removed under reduced pressure of Ar. Toluene (40 cm<sup>3</sup>) was added to the residue and the solution heated to reflux under Ar for 18 h. The toluene was removed under reduced pressure and the residue purified by column chromatography on SiO<sub>2</sub>, eluting with 5% MeOH in CH<sub>2</sub>Cl<sub>2</sub> to give the impure phosphine oxide. This was recrystallised from EtOAc-hexane to give the phosphine oxide 2d (5.992 g, 47%) as needles, m.p. 105-109 °C (Found: M<sup>+</sup> 284.1327.  $C_{18}H_{21}OP$  requires *M*, 284.1330);  $v_{max}/cm^{-1}(CHCl_3)$ 1630 (C=C), 995 and 920 (=CH<sub>2</sub>);  $\delta_{\rm H}$ (CDCl<sub>3</sub>) 0.83 (3 H, t, J 7.2, Me), 1.14-1.28 (1 H, m, CH<sub>A</sub>H<sub>B</sub>Me), 1.41-1.54 (1 H, m, CH<sub>A</sub>H<sub>B</sub>Me), 1.59–1.71 (2 H, m, PCHCH<sub>2</sub>), 2.95–3.08 (1 H, m, PCH), 4.98 (1 H, ddd, J 0.8, 3.5, 17.0, CH=CH<sub>A</sub>H<sub>B</sub>), 5.12 (1 H, ddd, J 1.4, 3.5, 10.2, CH=CH<sub>A</sub>H<sub>B</sub>), 5.60-5.77 (1 H, m, CH=CH<sub>2</sub>), 7.38-7.55 (6 H, m, Ph<sub>2</sub>P) and 7.70-7.86 (4 H, m, Ph<sub>2</sub>P);  $\delta_{\rm C}$ (CDCl<sub>3</sub>) 13.5 (Me), 20.7 (d, J 13.2, CH<sub>2</sub>Me), 28.85

(CH<sub>2</sub>CHP), 44.9 (d, *J* 69.0, PCH), 119.9, 120.1, 128.1, 128.25, 128.4, 128.55, 131.1, 131.2, 131.3, 131.4, 131.5, 131.6, 132.4, 132.9 and 133.0; m/z 284 (M<sup>+</sup>, 15%), 242 (M - C<sub>3</sub>H<sub>6</sub>, 8), 201 (Ph<sub>2</sub>PO, 100), 83 (M - Ph<sub>2</sub>PO, 18) and 77 (Ph, 20).

5-Methylhex-1-en-3-yldiphenylphosphine Oxide 2e.-In the same way, chlorodiphenylphosphine (6.3 cm<sup>3</sup>, 35 mmol) and 5methylhex-2-en-1-ol (4.0 g, 35 mmol) gave the phosphine oxide 2e (7.92 g, 76%) as needles, m.p. 153-155 °C (Found: M<sup>+</sup>, 298.1490. C<sub>19</sub>H<sub>23</sub>OP requires M, 298.1486); R<sub>F</sub> (EtOAchexane, 3:1) 0.34; v<sub>max</sub>/cm<sup>-1</sup> 3100–2800 (C–H), 1635 (C=C), 1600 (Ph), 1440 (P–Ph) and 1165 (P=O);  $\delta_{\rm H}$  (CDCl<sub>3</sub>) 0.80 (3 H, d, J 6.5,  $CMe_{A}Me_{B}$ ), 0.85 (3 H, d, J 6.5,  $CMe_{A}Me_{B}$ ), 1.33 (1 H, dtd, J 2.8, 9.0 and 11.8, PC-CH<sub>A</sub>H<sub>B</sub>), 1.80-1.58 (2 H, m, Me<sub>2</sub>CHCH<sub>A</sub>H<sub>B</sub>), 3.11 (1 H, dq, J 2.4 and 9.7, PCH), 4.96 (1 H, ddd, J 0.8, 4.6 and 17.0, CH=CH<sub>A</sub>H<sub>B</sub>), 5.11 (1 H, ddd, J 1.3, 3.8 and 10.0, CH=CH<sub>A</sub>H<sub>B</sub>), 5.68 (1 H, dtd, J 5.3, 9.8 and 17.0, CH=CH<sub>2</sub>), 7.39-7.53 (6 H, m, Ph<sub>2</sub>PO) and 7.70-7.85 (4 H, m, Ph<sub>2</sub>PO);  $\delta_{\rm C}({\rm CDCl}_3)$  20.4 (CMe<sub>A</sub>Me<sub>B</sub>), 23.6 (CMe<sub>A</sub>Me<sub>B</sub>), 25.3 (d, J 12, CH), 35.5 (CH<sub>2</sub>), 43.3 (d, J 68, PCH), 120.0 (d, J 12, CH=CH<sub>2</sub>), 128.2, 128.3, 128.5, 128.6, 131.1, 131.2, 131.4, 131.6, 132.0 (d, J 90, ipso-C), 132.8 and 132.9; m/z 298 (M<sup>+</sup>, 8%), 255 (M<sup>+</sup> - Pr, 4),  $242(M^+ - C_4H_8, 10), 202(Ph_2POH, 48) \text{ and } 201(Ph_2PO, 100).$ 

4-Methylpent-1-en-3-yldiphenylphosphine Oxide 2f.-In the same way, chlorodiphenylphosphine (0.90 cm<sup>3</sup>, 5.0 mmol) and 4-methylpent-2-en-1-ol (0.50 g, 5.0 mmol) gave the phosphine oxide 2f as needles, m.p. (from EtOAc-hexane) 164-165 °C (Found: M<sup>+</sup>, 284.1343. C<sub>18</sub>H<sub>21</sub>OP requires M, 284.1338); R<sub>F</sub> (EtOAc-hexane, 1:1) 0.13;  $v_{max}/cm^{-1}$  (CHCl<sub>3</sub>) 2940 (CH), 1720 (C=C), 1430 (P-Ph) and 1140 (P=O); δ<sub>H</sub>(CDCl<sub>3</sub>) 0.91 (3 H, d, J  $6.7, CHMe_AMe_B$ ,  $1.03(3 H, d, J 6.9, CHMe_AMe_B)$ , 2.21(1 H, m, m)Me<sub>2</sub>CH), 2.88 (1 H, ddd, J 2.6, 8.3 and 10.7, PCH), 4.95 (1 H, ddd, J 1.5, 4.0 and 17.0, CH=CH<sub>A</sub>H<sub>B</sub>), 5.16 (1 H, td, J 2.1 and 10.2, CH=CH<sub>A</sub>H<sub>B</sub>), 5.91 (1 H, dtd, J 6.4, 10.3 and 16.9, CH=CH<sub>2</sub>), 7.36–7.54 (6 H, m, Ph<sub>2</sub>PO) and 7.71–7.88 (4 H, m, Ph<sub>2</sub>PO);  $\delta_{C}(CDCl_{3})$  18.6 (Me), 22.9 (d, J 13, CHMe<sub>2</sub>), 27.4 (Me), 51.1 (d, J 69, PCH), 121.6 (d, J 13, CH=CH<sub>2</sub>), 127.9, 128.0, 128.7, 128.8, 129.7, 129.8, 130.7, 130.8, 131.1, 131.3, 131.4, 131.5, 132.8 (d, J 96.4 Hz, ipso-C) and 133.0 (d, J 93.9, *ipso-C*); m/z 284 (M<sup>+</sup>, 8%), 241 (M<sup>+</sup> – Pr), 202 (Ph<sub>2</sub>POH, 50), 201 (Ph<sub>2</sub>PO, 100) and 77 (Ph, 17).

1-Cyclopentylprop-2-enyldiphenylphosphine Oxide **2g**.—In the same way, chlorodiphenylphosphine (1.2 cm<sup>3</sup>, 6.8 mmol) and 3-cyclopentylprop-2-en-1-ol (0.85 g, 6.8 mmol) gave the phosphine oxide **2g** (613 mg, 29%) as needles, m.p. 162–164 °C (Found: M<sup>+</sup>, 310.1511. C<sub>20</sub>H<sub>23</sub>OP requires *M*, 310.1486); *R*<sub>F</sub> (EtOAc) 0.42;  $\nu_{max}/cm^{-1}(CDCl_3)$  3070 (aryl CH), 3000–2800 (CH), 1600 (Ph), 1435 (P–Ph), and 1175 (P=O);  $\delta_{H}(CDCl_3)$  1.15 (1 H, m), 1.20–1.63 (6 H, m), 1.73 (1 H, m), 2.28 [1 H, br septet, *J* ca. 7, (CH<sub>2</sub>)<sub>4</sub>CH], 3.07 (1 H, dt, *J* 5.9 and 9.5, PCH), 4.94 (1 H, ddd, *J* 1.3, 4.4 and 17.1, CH=CH<sub>A</sub>H<sub>B</sub>) 5.10 (1 H, ddd, *J* 1.6, 2.8 and 10.2, CH=CH<sub>A</sub>H<sub>B</sub>) 5.82 (1 H, dtd, *J* 5.9, 10.5 and 17.0, CH=CH<sub>2</sub>), 7.38–7.50 (6 H, m, Ph<sub>2</sub>PO) and 7.73–7.88 (4 H, m, Ph<sub>2</sub>PO);  $\delta_{C}$ (CDCl<sub>3</sub>) 24.7, 24.9, 29.6 (d, J 5), 31.8 (d, J 8), 38.4 [(CH<sub>2</sub>)<sub>4</sub>CH], 49.4 (d, J 68, PCH), 120.6 (d, J 12, CH=CH<sub>2</sub>), 128.1, 128.2, 128.4, 128.5, 130.9, 131.0, 131.2, 131.3, 131.4, 131.6, 131.6, 132.6 (d, 95, *ipso*-C), and 133.3 (d, J 92, *ipso*-C); *m/z* 310 (M<sup>+</sup>, 8%), 242 [Ph<sub>2</sub>P(O)C<sub>3</sub>H<sub>5</sub>, 17], 202 (Ph<sub>2</sub>POH, 72), 201 (Ph<sub>2</sub>PO, 100) and 77 (Ph, 42).

Other alkenyldiphenylphosphine oxides were prepared in the same way.

Methyl 5-Hydroxyiminopentanoate.—A solution of hydroxylamine hydrochloride (1.60 g, 23.1 mmol) and sodium acetate (1.89 g, 23.1 mmol) in water (20 cm<sup>3</sup>) was added to a stirred solution of methyl 5-oxopentanoate (1.0 g, 7.7 mmol) in ethanol  $(7 \text{ cm}^3)$ . The reaction mixture was stirred at room temperature for 24 h, poured into brine (20 cm<sup>3</sup>) and extracted with ether  $(3 \times 50 \text{ cm}^3)$ . The combined organic extracts were washed with brine (50 cm<sup>3</sup>), dried (Na<sub>2</sub>SO<sub>4</sub>) and the solvent was removed under reduced pressure to give the imino ester (previously prepared <sup>19</sup> by the nitration of methoxycyclopentane) as a pale yellow oil (1.05 g, 94%), v<sub>max</sub>/cm<sup>-1</sup>(film) 3350br (OH), 1730 s (C=O) and 1650 (C=N);  $\delta_{\rm H}$ (CDCl<sub>3</sub>) 1.74–2.09 (4 H, m, CH<sub>2</sub>CH<sub>2</sub>CO of both isomers), 2.25 (2 H, dt, J 7.3, 5.7, CH<sub>2</sub>CHN of cis isomer), 2.33-2.80 (6 H, m, CH<sub>2</sub>CHN of trans isomer and CH<sub>2</sub>CO of both isomers), 3.65 (3 H, s, Me of trans isomer), 3.67 (3 H, s, Me of cis isomer), 6.71 (1 H, t, J 5.7, CHN of cis isomer), 7.40 (1 H, t, J 6.0, CHN of trans isomer) and 7.5 (2 H, br s, OH of both isomers); m/z 129 (M - O, 8%), 128 (M - O, 8%)OH, 40), 114 (M – NOH and M – OMe, 40), 113 (M – MeOH, 100) and 96 (M - MeOH, OH, 92). Other oximes were commercially available, or were prepared in the same way.

Methods used to carry out 1,3-Dipolar Cycloadditions.— Method A. Aqueous sodium hypochlorite (2 mol dm<sup>-3</sup>; 1.2 equiv.) was added dropwise to a vigorously stirred solution of the oxime and the alkene 2 (0.5–1 equiv.) in dichloromethane (20 cm<sup>3</sup>/mmol oxime) at 0 °C. The solution was stirred at room temperature for the desired period and poured into water. The organic layer was removed and the aqueous layer extracted with dichloromethane. The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>), and the solvent was removed under reduced pressure to give the crude product.

Method B. NaOCl (2 mol dm<sup>-3</sup> aqueous solution; 2.4 equiv.) was added to a solution of the alkene 2 (1 equiv.) and the oxime (2 equiv.) in  $CH_2Cl_2$  (10 cm<sup>3</sup> per mmol of alkene) and the mixture sonicated in an ultrasonic washing-up tank until the reaction was complete by TLC, more oxime (2 equiv.) and NaOCl (2.4 equiv.) being added at intervals. The mixture was poured into water and separated, and the aqueous layer extracted three times with  $CH_2Cl_2$ . The combined organic layers were dried (MgSO<sub>4</sub>) and evaporated under reduced pressure to give the crude reduction product, which was purified by column chromatography on SiO<sub>2</sub>.

Method C. Chlorine gas was passed through a stirred solution of the oxime in ether or chloroform (depending on solubility) at -60 °C. After 15 min the blue solution turned blue-green and was evaporated to dryness under reduced pressure at -5 °C to give the imidoyl chloride. Triethylamine (1 equiv.) in chloroform or ether was added dropwise to a stirred solution of the imidoyl chloride and the alkene 2 (1-4 equiv.) in ether or chloroform at -10 °C. The solution was stirred at room temperature for 1-2 days and then evaporated under reduced pressure. Water was added and the solution was extracted. The combined organic extracts were dried (MgSO<sub>4</sub>) and then evaporated under reduced pressure to give the crude product.

Method D. An equimolar mixture of the alkene 2, the oxime, and chloramine-T trihydrate in EtOH (15  $\text{cm}^3$  per mmol of

reagents) was heated to reflux for a suitable period. At intervals, the mixture was cooled and more oxime and chloramine-T added. After the desired reflux period, the mixture was concentrated under reduced pressure and extracted with EtOAc. The extract was filtered, and the solvent removed under reduced pressure to give the crude reaction product, which was purified by column chromatography on SiO<sub>2</sub>.

Method E. A mixture of the oxime and 2 equiv. of NBS in dry DMF (10 cm<sup>3</sup>/mmol of oxime) was stirred at -20 °C for 1 h and then at 0 °C for 30 min. The mixture was then diluted with ether (5 cm<sup>3</sup> mmol<sup>-1</sup>), and a solution of the alkene 2 and 1 equiv. of triethylamine in ether was added slowly. The reaction was stirred at room temperature for 48 h, poured into water and extracted with dichloromethane. The combined organic extracts were washed with brine, dried (MgSO<sub>4</sub>), and the solvent was removed under reduced pressure to give the crude product.

Method F. Triethylamine (0.11 cm<sup>3</sup>, 0.8 mmol) in THF (2 cm<sup>3</sup>) was added dropwise in portions over 3 h to a stirred solution of the alkene 2 (0.39 mmol) and ethyl chlorooximido-acetate (121 mg, 0.8 mmol) in THF (5 cm<sup>3</sup>) and the solution stirred for 8 d, with more oxime and triethylamine added after 3.5 d. Water was added, and the mixture extracted into EtOAc (2  $\times$  15 cm<sup>3</sup>). The combined organic extracts were dried (Na<sub>2</sub>SO<sub>4</sub>) and evaporated under reduced pressure to give the crude product.

Method G. A solution of the primary nitroalkane and triethylamine (5–10 drops) in toluene (2 cm<sup>3</sup> mmol<sup>-1</sup> nitroalkane) was added dropwise to a solution of phenyl isocyanate (2 equiv.) and the alkene 2 (1–2 equiv.) in toluene. After being stirred at room temperature for 1 h, the solution was heated at 80 °C for 24 h. If TLC indicated the presence of alkene 2 a further addition of phenyl isocyanate and nitroalkane was made and heating was continued for a further 24 h. The reaction mixture was allowed to cool, diluted with water and the organic layer was separated. The aqueous layer was extracted with dichloromethane and the combined organic extracts were washed with 2 mol dm<sup>-3</sup> hydrochloric acid and brine, dried (MgSO<sub>4</sub>), and the solvent was removed under reduced pressure to give the crude product.

Method H. As method C, but the chloraldoxime and the alkene were heated together in toluene at reflux, in the absence of triethylamine.

5-Diphenylphosphinoylmethyl-3-ethyl-4,5-dihydroisoxazole 4 or 5a.—By Method C. Propanal oxime (230 mg, 3.1 mmol) and the phosphine oxide 2a (0.5 g, 2.1 mmol) gave a pale yellow solid. This was purified by flash column chromatography on silica (75 g) eluting with ethyl acetate. The first compound to be eluted was the phosphine oxide 2a (0.15 g, 30% recovery). The second compound to be eluted was the dihydroisoxazole (4 or 5a) (430 mg, 67%), as needles, m.p. 132-136 °C (from EtOAc) (Found: M<sup>+</sup>, 313.1234. C<sub>18</sub>H<sub>20</sub>NO<sub>2</sub>P requires M, 313.1231);  $v_{max}/cm^{-1}(CHCl_3)$  1585 (C=N);  $\delta_{H}(CDCl_3)$  1.12 (3 H, t, J 7.5, Me), 2.33 (2 H, q, J 7.5, CH<sub>2</sub>Me), 2.56 (1 H, dt, J 14.5, 10.2, PCH<sub>A</sub>H<sub>B</sub>), 2.86 (1 H, ddd, J 3.7, 9.0, 14.5, PCH<sub>A</sub>H<sub>B</sub>), 2.99 (1 H, dd, J 8.2, 17.3, 4-CH<sub>A</sub>H<sub>B</sub>), 3.07 (1 H, dd, J 9.4, 17.3, 4-CH<sub>A</sub>H<sub>B</sub>), 4.67-4.79 (1 H, m, OCH), 7.42-7.58 (6 H, m, Ph<sub>2</sub>P) and 7.67-7.81 (4 H, m,  $Ph_2P$ ); m/z 313 (M<sup>+</sup>, 2%), 258 (M – EtCN, 10), 257 (M – Et, HCN, 8), 243 (M –  $C_3H_8CN$ , 18), 216 [Ph<sub>2</sub>-P(O)Me, 42], 215 [Ph<sub>2</sub>P(O)CH<sub>2</sub>, 100] 201 (Ph<sub>2</sub>PO, 27) and 77 (Ph. 12).

By Method H. Propanal oxime (300 mg, 4.1 mmol) was converted as before into the chloroaldoxime. This and the phosphine oxide 2a (0.50 g, 2.1 mmol) were heated together in toluene at reflux to give a brown solid. Flash column chromatography of this on silica (60 g) eluting with ethyl acetate gave the phosphine oxide 2a (140 mg, 28% recovery) and the dihydroisoxazole (4 or 5a) (460 mg, 71%), as a white solid.

5-Diphenylphosphinoylmethyl-3-propyl-4,5-dihydroisoxazole 4 or 5b.—By Method A. The phosphine oxide 2a (0.243 g, 1.0 mmol), butyraldehyde oxime (0.176 g, 2.0 mmol), CH<sub>2</sub>Cl<sub>2</sub> (40 cm<sup>3</sup>), and aqueous NaOCl (2 mol dm<sup>-3</sup>; 1.2 cm<sup>3</sup>, 2.4 mmol) were stirred for 10 d, with more oxime and NaOCl added after 4 d. The crude mixture was purified by column chromatography on SiO<sub>2</sub>, eluting with EtOAc-hexane (3:1) then EtOAc, to give the dihydroisoxazole 4 or 5b (0.315 g, 96%) as needles, m.p. 111-113 °C (EtOAc-hexane) (Found: C, 69.6; H, 6.8; N, 4.4; P, 9.5%;  $M^+ - PrCN$ , 258.0804.  $C_{19}H_{22}NO_2P$  requires C, 69.7; H, 6.8; N, 4.3; P, 9.5%; M – PrCN, 258.0810);  $R_{\rm F}$  (EtOAc– hexane, 3:1) 0.14; v<sub>max</sub>/cm<sup>-1</sup>(CHCl<sub>3</sub>) 3000-2800 (CH), 1595 (Ph), 1355 (P–Ph), 1185 (P=O) and 1120 (C–O);  $\delta_{\rm H}$ (CDCl<sub>3</sub>) 0.92 (3 H, t, J 7.4, Me), 1.54 (2 H, sextet, J 7.4, 3"-H<sub>2</sub>), 2.28 (2 H, t, J 7.4, 3'-H<sub>2</sub>), 2.55 (1 H, dt, J 10.2 and 14.3, PCH<sub>A</sub>H<sub>B</sub>), 2.86 (1 H, ddd, J 3.7, 9.1, and 14.6, PCH<sub>A</sub>H<sub>B</sub>), 2.97 (1 H, dd, J 8.0 and  $17.4, 4-H_AH_B$ , 3.05 (1 H, dd, J 9.4 and 17.4,  $4-H_AH_B$ ), 4.72 (1 H, m, 5-H), 7.42-7.58 (6 H, m, Ph<sub>2</sub>PO) and 7.67-7.80 (4 H, m, Ph<sub>2</sub>PO);  $\delta_{\rm C}$ (CDCl<sub>3</sub>) 13.7 (Me), 19.6, 29.6, 35.4 (d, J 67, PCH<sub>2</sub>), 42.8, 74.8 (C-5), 128.7, 128.8, 128.8, 128.9, 130.4, 130.4, 130.8, 130.9, 131.8 (d, J 99, ipso-C), 132.1, 133.3 (d, J 100, ipso-C) and 159.8 (C=N); m/z 258 (M<sup>+</sup> – PrCN, 2.3%), 243 [Ph<sub>2</sub>P(O)-C<sub>2</sub>H<sub>2</sub>O, 2.5], 215 [Ph<sub>2</sub>P(O)CH<sub>2</sub>, 100], 201 (Ph<sub>2</sub>PO, 25) and 77 (Ph, 34).

5-Diphenylphosphinoylmethyl-3-hexyl-4,5-dihydroisoxazole 4 or 5c.—By Method A. The phosphine oxide 2a (246 mg, 1 mmol), heptanal oxime (259 mg, 2 mmol), CH<sub>2</sub>Cl<sub>2</sub> (40 cm<sup>3</sup>), and aqueous NaOCl (2 mol dm<sup>-3</sup>; 1.2 cm<sup>3</sup>, 2.4 mmol) were stirred together for 10 d, with more oxime and NaOCl added after 2 and 7 d. The residue was purified by column chromatography on SiO<sub>2</sub>, eluting with EtOAc, to give the *dihydroisoxazole* 4 or 5c(356 mg, 95%) as needles, m.p. 66-68°C (EtOAc-hexane) (Found: C, 71.7; H, 7.95; N, 3.75; P, 8.5%; M<sup>+</sup> – Bu, 312.1155.  $C_{22}H_{28}NO_2P$  requires C, 71.5; H, 7.6; N, 3.8; P, 8.4%; M - Bu, 312.1154);  $R_{\rm F}$  (EtOAc-hexane, 3:1) 0.28;  $\nu_{\rm max}/{\rm cm}^{-1}({\rm CHCl}_3)$ 3100-2800 (C-H), 1675 (C=N), 1595 (Ph), 1440 (P-Ph), 1170 (P=O), and 1125 (C-O);  $\delta_{\rm H}$  (CDCl<sub>3</sub>) 0.85 (3 H, t, J 6.5, Me), 1.25-1.32 [6 H, m, (CH<sub>2</sub>)<sub>3</sub>Me], 1.50 (2 H, br quintet, J ca. 6.5, 3"-H<sub>2</sub>), 2.29 (2 H, t, J 7.5, 3'-H<sub>2</sub>), 2.55 (1 H, td, J 10.1 and 14.5, PCH<sub>A</sub>H<sub>B</sub>), 2.86 (1 H, ddd, J 3.7, 9.1 and 14.5, PCH<sub>A</sub>H<sub>B</sub>), 2.96 (1 H, dd, J7.8 and 17.2, 4-H<sub>A</sub>H<sub>B</sub>), 3.06 (1 H, dd, J9.5 and 17.2, 4-H<sub>A</sub>H<sub>B</sub>), 4.92 (1 H, m, OCH), 7.42-7.58 (6 H, m, Ph<sub>2</sub>PO) and 7.67–7.80 (4 H, m, Ph<sub>2</sub>PO);  $\delta_{\rm C}$ (CDCl<sub>3</sub>) 14.0 (Me), 22.4, 26.2, 27.7, 28.9, 31.4, 35.4 (d, J 67, PCH<sub>2</sub>), 42.9, 74.8 (OC), 128.7, 128.8, 128.9, 128.9, 130.4, 130.4, 130.8, 130.9, 131.7 (d, J ca. 100, ipso C), 132.1, 133.2 (d, J 100, ipso C) and 160.0 (C=N); m/z 312 (M<sup>+</sup> – Bu, 0.35%), 299 (M<sup>+</sup> – C<sub>5</sub>H<sub>10</sub>, 0.5), 258 [Ph<sub>2</sub>P(O)C<sub>3</sub>H<sub>6</sub>, 2.7], 216 [Ph<sub>2</sub>P(O)Me, 56], 215 [Ph<sub>2</sub>P(O)CH<sub>2</sub>, 100], 202 (Ph<sub>2</sub>POH, 6), 201 (Ph<sub>2</sub>PO, 22) and 77 (Ph, 16).

 $\label{eq:constraint} 5-Diphenylphosphinoylmethyl-3-undecyl-4, \\ 5-dihydroisox azole$ 4 or 5d.—By Method E. Dodecanal oxime (7.30 g, 36.6 mmol), the phosphine oxide 2a (4.43 g, 18.3 mmol) and NBS (13.0 g, 73.2 mmol) gave a brown gum. Flash column chromatography on silica (1000 g) eluting with ether gave the dihydroisoxazole 4 or 5d (4.0 g, 50%) as needles, m.p. 64-66 °C (from EtOAchexane) (Found:  $M^+$ , 439.2601.  $C_{27}H_{38}NO_2P$  requires M, 439.2640);  $v_{max}/cm^{-1}(CHCl_3)$  1590w (C=N), 1430 (P-Ph), and  $1175 (P=O); \delta_{H}(CDCl_3) 0.86 (3 H, t, J 6.4, Me), 1.13-1.33 [16 H,$ m, (CH<sub>2</sub>)<sub>8</sub>Me], 1.47–1.53 (2 H, m, CH<sub>2</sub>CH<sub>2</sub>CN), 2.29 (2 H, t, J 7.5, CH<sub>2</sub>CH<sub>2</sub>CN), 2.55 (1 H, dt, J 10.2, 14.5, PCH<sub>4</sub>H<sub>B</sub>), 2.86 (1 H, ddd, J 3.7, 9.0, 14.5, PCH<sub>A</sub>H<sub>B</sub>), 2.98 (1 H, dd, J 7.8, 17.1, 4-CH<sub>A</sub>H<sub>B</sub>), 3.05 (1 H, dd, J9.3, 17.1, 4-CH<sub>A</sub>H<sub>B</sub>), 4.62–4.83 (1 H, m, CHO), 7.43-7.54 (6 H, m, Ph<sub>2</sub>P) and 7.67-7.81 (4 H, m, Ph<sub>2</sub>P);  $\delta_{\rm C}$ (CDCl<sub>3</sub>) 14.0 (Me), 22.6, 26.2, 27.6, 29.1, 29.2, 29.4, 29.5, 29.55, 31.8, 35.35 (d, J 68, PCH<sub>2</sub>), 74.7 (CHO), 128.7, 128.75, 128.8, 128.9, 130.3, 130.4, 130.8, 130.9, 131.1, 132.05,

133.6 and 160.0 (C=N); m/z 440 (M + H, 5%), 439 (M<sup>+</sup>, 4), 438 (M - H, 3), 312 (M - C<sub>9</sub>H<sub>19</sub>, 8), 299 (M - C<sub>10</sub>H<sub>20</sub>, 12), 258 (M - C<sub>11</sub>H<sub>23</sub>CN, 20), 243 [Ph<sub>2</sub>P(O)CH<sub>2</sub>CO, 25], 216 [Ph<sub>2</sub>P(O)Me, 85], 215 [Ph<sub>2</sub>P(O)CH<sub>2</sub>, 100] and 201 (Ph<sub>2</sub>PO, 30).

5-Diphenylphosphinoylmethyl-3-phenyl-4,5-dihydroisoxazole 4 or 5e.—By Method A. The phosphine oxide 2a (242 mg, 1 mmol), benzaldehyde oxime (0.17 cm<sup>3</sup>, 2 mmol),  $CH_2Cl_2$  (10 cm<sup>3</sup>) and aqueous NaOCl (2 mol dm<sup>-3</sup>; 1.5 cm<sup>3</sup>, 3 mmol) were stirred together for 10 d, with more oxime and NaOCl added after 4 and 6 d. The residue was purified by column chromatography on  $SiO_2$ , eluting with EtOAc to give the dihydroisoxazole 4 or 5e, which recrystallised from EtOAchexane as needles (199 mg, 55%), m.p. 145-147 °C (Found: C, 73.2; H, 5.7; N, 4.0; P, 8.7%;  $M^+$ , 361.1248.  $C_{22}H_{20}NO_2P$  requires C, 73.1; H, 5.6; N, 3.9; P, 8.6%; M, 361.1232);  $R_F$ (EtOAc-hexane, 9:1) 0.26;  $v_{max}/cm^{-1}(CDCl_3)$  3100-3000 (aryl CH), 3000-2800 (CH), 1730 (C=N), 1600 (Ph), 1440 (P-Ph), 1185 (P=O) and 1120 (C–O);  $\delta_{\rm H}$ (CDCl<sub>3</sub>) 2.67 (1 H, dt, J 10.3 and 14.3, PCH<sub>A</sub>H<sub>B</sub>), 2.95 (1 H, ddd, J 3.7, 9.1 and 14.6,  $PCH_AH_B$ , 3.42 (1 H, dd, J 8.2 and 16.5, 4- $H_AH_B$ ), 3.50 (1 H, dd, J 9.4 and 16.5, 4-H<sub>A</sub>H<sub>B</sub>), 4.95 (1 H, m, OCH) and 7.34–7.85 (15 H, m, Ph<sub>2</sub>PO and PhCN); δ<sub>c</sub>(CDCl<sub>3</sub>) 35.5 (d, J 68, PCH<sub>2</sub>), 40.7 (C-4), 76.1 (OC), 126.7, 128.6, 128.7, 128.8, 128.9, 128.9, 129.2 (N=C-C<sub>aryl</sub>), 130.2, 130.3, 130.4, 130.5 (d, J 110, ipso C), 130.8, 130.9, 131.1, 132.1, 132.2, 133.1 (d, J 100, ipso C) and 157.3 (C=N); m/z 361 (M<sup>+</sup>, 1%), 258 (M<sup>+</sup> – PhCN, 0.2), 216 [Ph<sub>2</sub>P(O)Me, 63], 215 [Ph<sub>2</sub>P(O)CH<sub>2</sub>, 100)] 202 (Ph<sub>2</sub>POH, 3), 201 (Ph<sub>2</sub>PO, 20) and 77 (Ph, 27).

By Method B. Aqueous NaOCl (2 mol dm<sup>-3</sup>; 1.2 cm<sup>3</sup>, 2.4 mmol) was added to a solution of the phosphine oxide **2a** (242 mg, 1 mmol) and benzaldehyde oxime (242 mg, *ca.* 2 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 cm<sup>3</sup>) at 0 °C, and the mixture sonicated for 40 h over 8 d. After work-up, the residue was purified by column chromatography on SiO<sub>2</sub>, eluting with EtOAc to give the dihydroisoxazole 4 or 5e as needles (224 mg, 62%).

(1'R\*,5R\*)-5-(1'-Diphenylphosphinoylethyl)-3-methyl-4,5-dihydroisoxazole 4f.—By method A. The phosphine oxide 2b (251 mg, 1 mmol), acetaldehyde oxime  $(1.2 \text{ cm}^3, 20 \text{ mmol})$ , CH<sub>2</sub>Cl<sub>2</sub>(10 cm<sup>3</sup>), and aqueous NaOCl (2 mol dm<sup>-3</sup>; 1.5 cm<sup>3</sup>, 3 mmol) were stirred together for 20 d, with more NaOCl added after 5, 10 and 15 d. The residue was purified by column chromatography on  $SiO_2$ , eluting with 10% hexane in EtOAc to give recovered phosphine oxide 2b (225 mg, 88%) and the anti-dihydroisoxazole 4f (30 mg, 10%) as needles, m.p. 181–183 °C (Found: C, 69.2; H, 6.5; N, 4.3; P, 9.7%;  $M^+$  – MeCN, 272.0988.  $C_{18}H_{20}NO_2P$ requires C, 69.0; H, 6.4; N, 4.5; P, 9.9%; M - MeCN, 272.0966);  $R_F$  (EtOAc-hexane, 9:1) 0.17;  $v_{max}/cm^{-1}(CDCl_3)$ 3100-3040 (aryl CH), 3000-2800 (CH), 1725 (C=N), 1600 (Ph), 1435 (P–Ph), 1190 (P=O) and 1115 (C–O);  $\delta_{\rm H}$ (CDCl<sub>3</sub>) 1.14 (3 H, dd, J 7.1 and 15.7, PCMe), 1.93 (3 H, s, 3-Me), 2.87 (1 H, dd, J 11.2 and 18.2,  $4-H_AH_B$ , 2.9 (1 H, partially obscured m, PCH), 3.24 (1 H, dd, J 8.4 and 18.0, 4-H<sub>A</sub>H<sub>B</sub>), 4.70 (1 H, tdd, J 3.5, 8.3 and 11.0, OCH), 7.44-7.55 (6 H, m, Ph<sub>2</sub>PO) and 7.75-7.85 (4 H, m, Ph<sub>2</sub>PO);  $\delta_{C}$ (CDCl<sub>3</sub>) 5.7 (Me), 12.9 (Me), 35.3 (d, *J* 68, PCH), 39.3 (C-4), 78.2 (d, J 4, OCH), 128.7, 128.8, 128.9, 130.5, 130.6, 130.7, 131.6 (d, J 98 ipso C), 131.8 (d, J 94 ipso C), 131.8, 131.9 and 156.2 (C=N); m/z 272 (M<sup>+</sup> – MeCN, 2%), 230 [Ph<sub>2</sub>P(O)Et, 100], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 56], 202 (Ph<sub>2</sub>POH, 79), 201 (Ph<sub>2</sub>PO, 50) and 77 (Ph, 48).

 $(1'R^*,5R^*)$ - and  $(1'R^*,5S^*)$ -5-(1'-Diphenylphosphinoylethyl)-3-ethyl-4,5-dihydroisoxazoles 4g and 5g.—By method C. Propanal oxime (0.43 g, 5.9 mmol) and the phosphine oxide 2b (1.0 g, 3.9 mmol) gave an off-white solid which was purified by flash column chromatography on silica (150 g) eluting with ethyl

acetate. The first compound to be eluted was 3,4-diethylfurazan 2-oxide (140 mg, 33%), as a yellow oil (Found: M<sup>+</sup>, 142.0732.  $C_6H_{10}N_2O_2$  requires *M*, 142.0742);  $v_{max}/cm^{-1}(CHCl_3)$  1600 and 955 (lit., <sup>20</sup> 1600, 1142, 1037, 955 and 843 cm<sup>-1</sup>);  $\delta_{\rm H}$ (CDCl<sub>3</sub>) 1.20 (3 H, t, J7.6, 3-CCH<sub>2</sub>Me), 1.33 (3 H, t, J7.5, 4-CCH<sub>2</sub>Me), 2.54 (2 H, q, J 7.6, 3-CCH<sub>2</sub>) and 2.66 (2 H, q, J 7.5, 4-CCH<sub>2</sub>); δ<sub>C</sub>(CDCl<sub>3</sub>) 9.6 (4-CCH<sub>2</sub>Me), 10.8 (3-CCH<sub>2</sub>Me), 15.8 (4-CCH<sub>2</sub>), 19.2 (3-CCH<sub>2</sub>), 116.7 (4-C) and 158.7 (C=N); m/z 142 (M<sup>+</sup> 20%), 112 (M - NO, 17), 81 (M - N<sub>2</sub>O<sub>2</sub>, H, 35) and 67 (EtCCN or EtCCCH<sub>2</sub>, 100). The second compound to be eluted was the phosphine oxide 2b (370 mg, 37% recovery). The third compound to be eluted was the anti-4,5-dihydroisoxazole 4g (580 mg, 45%), as needles, m.p. 137-140 °C (from EtOAchexane) (Found: M<sup>+</sup>, 327.1388. C<sub>19</sub>H<sub>32</sub>NO<sub>2</sub>P requires 327.1387);  $v_{max}/cm^{-1}(CHCl_3)$  1595 (C=N) and 1118;  $\delta_H(CDCl_3)$ 1.09 (3 H, t, J 7.5, CH<sub>2</sub>Me), 1.10 (3 H, dd, J 7.1, 15.8, CHMe), 2.28 (2 H, q, J.7.5, CH<sub>2</sub>Me), 2.85 (1 H, dd, J 11.0, 18.0, 4-CH<sub>A</sub>H<sub>B</sub>), 2.94 (1 H, ddq, J 7.3, 3.5, 7.1, PCH), 3.23 (1 H, dd, J 8.2, 18.0, 4-CH<sub>A</sub>H<sub>B</sub>), 4.67(1 H, dddd, J3.5, 8.2, 11.0, 14.5, CHO), 7.41-7.47 (6 H, m, Ph<sub>2</sub>P) and 7.73-7.83 (4 H, m, Ph<sub>2</sub>P);  $\delta_{c}(CDCl_{3})$  5.65 (d, J 2, PCHMe), 10.7 (CH<sub>2</sub>Me), 21.0 (CH<sub>2</sub>Me), 35.4 (d, J 68. PCH), 37.5 (CHCH<sub>2</sub>), 77.9 (d, J 5, CHO), 128.3, 128.4, 128.6, 128.7, 128.8, 130.4, 130.5, 130.6, 130.8, 130.9, 131.1,131.3, 131.69, 131.71, 131.78, 131.81, 132.1, 132.3 and 160.6 (C=N); m/z 327 (M<sup>+</sup>, 5%), 310 (M – OH, 5), 272 (M – EtCN, 60), 257 (M – Me, EtCN, 35), 230 [Ph<sub>2</sub>P(O)Et, 100)], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 50], 202 (Ph<sub>2</sub>POH, 65), 201 (Ph<sub>2</sub>PO, 60) and 77 (Ph, 20). The fourth compound to be eluted was the syn-4,5dihydroisoxazole 5g (111 mg, 9%), as needles, m.p. 114-116 °C (from EtOAc-hexane);  $v_{max}/cm^{-1}(CHCl_3)$  1595 (C=N) and  $1120; \delta_{H}(CDCl_{3}) 1.03 (3 H, t, J7.5, CH_{2}Me), 1.20 (3 H, dd, J7.2, dd)$ 16.7, CHMe), 2.22 (2 H, q, J7.5, CH<sub>2</sub>Me), 2.70 (1 H, ddq, J7.3, 11.1, 7.2, PCH), 2.82 (2 H, d, J9.4, CH<sub>2</sub>CO), 4.68 (1 H, ddt, J7.3, 8.2, 9.4, CHO), 7.44–7.56 (6 H, m, Ph<sub>2</sub>P) and 7.75–7.86 (4 H, m, Ph<sub>2</sub>P);  $\delta_{C}(CDCl_{3})$  10.6, 11.05, 21.0 (CH<sub>2</sub>Me), 38.3 (d, J 69, PCH), 41.1 (d, J 2.5, CHCH<sub>2</sub>), 79.3 (CHO), 128.4, 128.47, 128.5, 128.6, 130.45, 130.9, 131.0, 131.2, 131.3, 131.4, 131.6, 131.7, 131.8, 132.5 and 160.6 (C=N); m/z 230 [Ph<sub>2</sub>P(O)Et, 100], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 65], 202 (Ph<sub>2</sub>POH, 95), 201 (Ph<sub>2</sub>PO, 60) and 77 (Ph, 50).

 $(1'R^*, 5R^*)$ - and  $(1'R^*, 5S^*)$ -5-(1'-Diphenylphosphinoylethyl)-3-propyl-4,5-dihydroisoxazoles 4h and 5h.—By method B. The phosphine oxide 2b (257 mg, 1 mmol), butyraldehyde oxime (0.17 cm<sup>3</sup>, 2 mmol), CH<sub>2</sub>Cl<sub>2</sub> (10 cm<sup>3</sup>) and aqueous NaOCl (2 mol dm<sup>-3</sup>; 1.5 cm<sup>3</sup>, 3 mmol) were sonicated together for 11 h over 2 d. The residue was purified by column chromatography on SiO<sub>2</sub>, eluting with EtOAc. The first compound isolated was the anti-4,5-dihydroisoxazole 4h (239 mg, 70%) as needles, m.p. 139–141 °C (Found: C, 70.4; H, 7.1; N, 4.0; P, 9.1%;  $M^+$  – PrCN, 272.0387. C<sub>20</sub>H<sub>24</sub>NO<sub>2</sub>P requires C, 70.4; H, 7.1; N, 4.1; P, 9.1%; M – PrCN, 272.0366);  $R_{\rm F}$  (EtOAc-hexane, 3:1) 0.24; v<sub>max</sub>/cm<sup>-1</sup>(CHCl<sub>3</sub>) 2920 (CH), 1660 (C=N), 1580 (Ph), 1450 (P-Ph), 1300 (P=O) and 1130 (C–O); δ<sub>H</sub>(CDCl<sub>3</sub>) 0.91 (3 H, t, J 7.4, MeCH<sub>2</sub>), 1.13 (3 H, dd, J7.1 and 15.8, MeCH), 1.55 (2 H, sextet, J7.4, MeCH<sub>2</sub>), 2.26 (2 H, t, J7.5, EtCH<sub>2</sub>), 2.86 (1 H, dd, J11.0 and 17.9, 4-H<sub>A</sub>H<sub>B</sub>), 2.9 (1 H, partially obscured m, PCH), 3.23 (1 H, dd, J7.8 and 17.9, 4-H<sub>A</sub>H<sub>B</sub>), 4.69 (1 H, tdd, J3.5, 8.1 and 11.2, OCH), 7.43-7.55 (6 H, m, Ph<sub>2</sub>PO) and 7.74-7.85 (4 H, m, Ph<sub>2</sub>PO); δ<sub>C</sub>(CDCl<sub>3</sub>) 5.7 (d, J 2, CHMe), 13.7 (CH<sub>2</sub>Me), 19.6 (CH<sub>2</sub>), 29.5 (CH<sub>2</sub>), 35.5 (d, J 68, PCH), 37.8 (CH<sub>2</sub>), 77.9 (OC), 128.7, 128.9, 129.0, 130.5, 130.6, 130.7, 131.7 (d, J 100, ipso C), 131.8, 131.9, 132.0 (d, J90, ipso C) and 159.7 (C=N); m/z 272 (M<sup>+</sup> - PrCN, 1%, 257 [Ph<sub>2</sub>P(O)C<sub>3</sub>H<sub>4</sub>O, 0.5], 230 [Ph<sub>2</sub>P(O)Et, 100], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 65], 202 (Ph<sub>2</sub>POH, 88), 201 (Ph<sub>2</sub>PO, 60) and 77 (Ph, 76). The second product to be isolated was the syn-4,5-dihydroisoxazole 5h (48 mg, 14%), which was, unfortunately, not characterised, but was identified by its <sup>1</sup>H

NMR;  $\delta_{H}$ (CDCl<sub>3</sub>) 0.9 (3 H, t, J7.0, CH<sub>2</sub>Me), 1.22 (3 H, dd, J7.2 and 16.7, CHMe), 1.47 (2 H, sextet, J7.5, MeCH<sub>2</sub>), 2.21 (2 H, t, J 7.0, 3'-H<sub>2</sub>), 2.71 (1 H, quintet of doublets, J7.2 and 11.2, PCH), 2.83 (2 H, d, J9.4, 4-H<sub>2</sub>), 4.70 (1 H, quintet, J8.0, OCH), 7.4–7.6 (6 H, m, Ph<sub>2</sub>PO) and 7.7–7.9 (4 H, m, Ph<sub>2</sub>PO).

By method D. The phosphine oxide **2b** (130 mg, 0.5 mmol), butyraldehyde oxime (43 mg, 0.5 mmol), and chloramine-T (141 mg, 0.6 mmol) were dissolved in EtOH (10 ml) and heated at reflux for 6 d, with more reagents added after 3 d. Work-up gave a residue which was purified by column chromatography on SiO<sub>2</sub>, eluting with 25% hexane in EtOAc, to give the *anti*-4,5dihydroisoxazole **4h** (47 mg, 27%), the phosphine oxide **2b** (71 mg, 55%) and the syn-4,5-dihydroisoxazole **5h** (25 mg, 14%), which were all recognised by their <sup>1</sup>H NMR spectra.

(1'R\*,5R\*)- and (1'R\*,5S\*)-5-(1'-Diphenylphosphinoylethyl)-3-hexyl-4,5-dihydroisoxazoles 4i and 5i.-By method A. The phosphine oxide 2b (132 mg, 0.52 mmol), heptanal oxime (130 mg, 1 mmol), CH<sub>2</sub>Cl<sub>2</sub> (20 cm<sup>3</sup>) and aqueous NaOCl (2 mol  $dm^{-3}$ ; 0.8 cm<sup>3</sup>, 1.6 mmol) were stirred together for 7 d, with more oxime and NaOCl added after 6 d. The residue was purified by column chromatography on SiO<sub>2</sub>, eluting with EtOAc-hexane (3:1). The first compound isolated was the anti-4,5-dihy*droisoxazole* 4i (152 mg, 77%) as needles, m.p. (EtOAc-hexane) 112–114 °C (Found: C, 72.2; H, 8.1; N, 3.6; P, 7.9%; M<sup>+</sup> – C<sub>5</sub>H<sub>10</sub>, 313.1238. C<sub>23</sub>H<sub>30</sub>NO<sub>2</sub>P requires C, 72.0; H, 7.9; N, 3.65; P, 8.1%; M  $- C_5 H_{10}$ , 313.1232);  $R_F$  (EtOAc-hexane, 3:1) 0.31,  $v_{max}/cm^{-1}(CHBr_3)$  3000–2800 (CH), 1626 (C=N), 1591 (Ph), 1438 (P–Ph), 1200 (P=O) and 1071 (C–O);  $\delta_{\rm H}({\rm CDCl}_3)$  0.85 (3 H, t, J 6.5, CH<sub>2</sub>Me), 1.14 (3 H, dd, J 7.1 and 15.8, CHMe), 1.21-1.38 [6 H, m, (CH<sub>2</sub>)<sub>3</sub>Me], 1.51 (2 H, quintet, J7.5, 3"-H<sub>2</sub>), 2.27 (2 H, t, J 7.5, 3'-H<sub>2</sub>), 2.87 (1 H, dd, J 11.0 and 17.9, 4- $H_AH_B$ , 2.9 (1 H, partially obscured m, PCH), 3.2 (1 H, dd, J 8.2 and 18.0, 4-H<sub>A</sub>H<sub>B</sub>), 4.69 (1 H, tdd, J 3.4, 8.1 and 11.1, OCH), 7.44-7.55 (6 H, m, Ph<sub>2</sub>PO) and 7.75-7.86 (4 H, m, Ph<sub>2</sub>PO);  $\delta_{\rm C}({\rm CDCl}_3)$  5.7 (d, J 3, CHMe), 14.0 (CH<sub>2</sub>Me), 22.4 (CH<sub>2</sub>), 26.2 (CH<sub>2</sub>), 27.6 (CH<sub>2</sub>), 28.8 (CH<sub>2</sub>), 31.4 (CH<sub>2</sub>), 35.5 (d, J 68, PCH), 37.8 (CH<sub>2</sub>), 77.9 (d, J 5, OC), 128.7, 128.8, 129.0, 130.6, 130.6, 130.7, 131.7 (d, J 98, ipso C), 131.8, 131.9, 131.9 (d, J 95, ipso C) and 159.9 (C=N); m/z 313 (M<sup>+</sup> - C<sub>5</sub>H<sub>10</sub>, 0.6%), 272  $[Ph_2P(O)C_4H_7O, 2.4]$  257  $[Ph_2P(O)C_3H_4O, 1.4],$ 230 [Ph<sub>2</sub>P(O)Et, 100], 202 (Ph<sub>2</sub>POH, 38) and 201 (Ph<sub>2</sub>PO, 32). The second compound isolated was the syn-4,5-dihydroisoxazole 5i (60 mg, 30%) as needles, m.p. (EtOAc-hexane) 131-132 °C (Found: C, 71.8; H, 7.85; N, 3.5; P, 7.85%;  $M^+ - C_5H_{10}$ , 313.1228. C<sub>23</sub>H<sub>30</sub>NO<sub>2</sub>P requires C, 72.0; H, 7.9; N, 3.65; P, 8.1%;  $M - C_5 H_{10}$ , 313.1232);  $R_F$  (3:1:EtOAc:hexane) 0.15, v<sub>max</sub>/cm<sup>-1</sup>(CDCl<sub>3</sub>) 3060 (aryl CH), 3000–2800 (C-H), 1670 (C=N), 1590 (Ph), 1435 (P-Ph), 1180 (P=O) and 1115 (C-O); δ<sub>H</sub>(CDCl<sub>3</sub>) 0.86 (3 H, t, J 6.5, CH<sub>2</sub>Me), 1.22 (3 H, dd, J 7.2 and 16.6, CHMe), 1.1-1.3 [6 H, m, (CH<sub>2</sub>)<sub>3</sub>Me], 1.4 (2 H, poorly resolved quintet, J ca. 7, 3"-H<sub>2</sub>), 2.22 (2 H, t, J 7.5, 3'-H<sub>2</sub>), 2.70 (1 H, quintuplet d, J 7.3 and 11.3, PCH), 2.83 (2 H, d, J 9.5, 4-H<sub>2</sub>), 4.69 (1 H, br quintet, J ca. 8.5, OCH), 7.43-7.57 (6 H, m, Ph<sub>2</sub>PO) and 7.74–7.85 (4 H, m, Ph<sub>2</sub>PO);  $\delta_{c}$ (CDCl<sub>3</sub>) 11.4 (Me), 14.0 (Me), 22.5 (CH<sub>2</sub>), 26.1 (CH<sub>2</sub>), 27.6 (CH<sub>2</sub>), 28.9 (CH<sub>2</sub>), 31.4 (CH<sub>2</sub>), 38.5 (d, J 68, PCH), 41.1 (CH<sub>2</sub>), 79.4 (OC), 128.5, 128.6, 128.7, 128.7, 131.0 (d, J 92, ipso C), 131.1, 131.2, 131.4, 131.5, 131.9, 131.9, 132.2 (d, J 96, ipso C) and 160.0 (C=N); m/z 313 ( $M^+ - C_5H_{10}$ , 0.5%), 272 [ $Ph_2P(O)C_4H_7O$ , 2.4], 258  $[Ph_2P(O)C_3H_5O, 1.0], 257 [Ph_2P(O)C_3H_4O, 2],$ [Ph<sub>2</sub>P(O)Et, 100], 202 (Ph<sub>2</sub>POH, 40) and 201 (Ph<sub>2</sub>PO, 34).

 $(1'R^*,5R^*)$ - and  $(1'R^*,5S^*)$ -5-(1'-Diphenylphosphinoylethyl)-3-undecyl-4,5-dihydroisoxazoles **4j** and **5j**.—By method E. Dodecanal oxime (1.75 g, 17.6 mmol) and the phosphine oxide **2b** (1.5 g, 5.9 mmol) gave an oil which was purified by flash column chromatography on silica (400 g) eluting with ether.

The first compound to be eluted was the anti-4,5-dihydroisoxazole 4j (1.12 g, 42%), as needles, m.p. 103-106 °C (from EtOAchexane) (Found: C, 74.1; H, 8.95; N, 3.0; P, 6.6%; M<sup>+</sup> 453.2788. C<sub>28</sub>H<sub>40</sub>NO<sub>2</sub>P requires C, 74.1; H, 8.9; N, 3.0; P, 6.8%; *M*, 453.2792),  $v_{max}/cm^{-1}(CDCl_3)$  1595 (C=N), 1435 (P-Ph) and 1185 (P=O),  $\delta_{\rm H}$ (CDCl<sub>3</sub>) 0.86 (3 H, t, J 6.4, CH<sub>2</sub>Me), 1.13 (3 H, dd, J 7.1, 15.8, CHMe), 1.18-1.27 [16H, m, (CH<sub>2</sub>)<sub>8</sub>Me], 1.48–1.54 (2 H, m, CH<sub>2</sub>CH<sub>2</sub>CN), 2.28 (2 H, t, J 7.5, CH<sub>2</sub>CH<sub>2</sub>CN), 2.86 (1 H, dd, J 11.0, 18.0, 4-CH<sub>A</sub>H<sub>B</sub>), 2.92-3.02 (1 H, m, PCH), 3.23 (1 H, dd, J 8.3, 18.0, 4-CH<sub>A</sub>H<sub>B</sub>), 4.65-4.72 (1 H, m, CHO), 7.44–7.55 (6 H, m, Ph<sub>2</sub>P) and 7.75–7.84 (4 H, m, Ph<sub>2</sub>P); m/z 453 (M<sup>+</sup>, 8%), 452 (M – H, 8), 326 (M – C<sub>9</sub>H<sub>19</sub>, 8), 313 (M – C<sub>10</sub>H<sub>20</sub>, 20), 272 (M – C<sub>10</sub>H<sub>21</sub>CN, 40), 230 [Ph<sub>2</sub>P(O)Et, 100], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 20], 202 (Ph<sub>2</sub>POH, 30), 201 (Ph<sub>2</sub>PO, 27) and 77 (Ph, 10). The second fraction to be eluted was found by NMR to contain the phosphine oxide 2b and the dihydroisoxazole 5j in a ratio of 2:1. Separation by HPLC eluting with dichloromethane-methanol (50:1) gave 2b (450 mg, 30% recovery) and the syn-4,5-dihydroisoxazole 5j (280 mg, 11%), as needles, m.p. 98-99 °C (from EtOAc-hexane) (Found: C, 74.35; H, 8.8; N, 3.1; P, 7.1%; M<sup>+</sup>, 453.2815. C<sub>28</sub>H<sub>40</sub>NO<sub>2</sub>P requires C, 74.1; H, 8.9; N, 3.0; P, 6.8%; M, 453.2792);  $v_{max}/cm^{-1}(CDCl_3)$  1605 (C=N), 1440 (P-Ph) and 1175 (P=O); δ<sub>H</sub>(CDCl<sub>3</sub>) 0.87 (3 H, t, J 6.3, CH<sub>2</sub>Me), 1.18–1.33 [16 H, m, (CH<sub>2</sub>)<sub>8</sub>Me], 1.23 (3 H, dd, J 7.2, 16.6, CHMe), 1.40-1.47 (2 H, m, CH<sub>2</sub>CH<sub>2</sub>CN), 2.22 (2 H, t, J 7.6, CH<sub>2</sub>CH<sub>2</sub>CN), 2.69-2.73 (1 H, d quintet, J 11, 7, PCH), 2.84 (2 H, d, J 9.4, 4-CH<sub>2</sub>), 4.66–4.73 (1 H, m, CHO), 7.44–7.56 (6 H, m, Ph<sub>2</sub>P) and 7.75–7.85 (4 H, m,  $Ph_2P$ ); m/z 454 (M + H, 5%), 453 (M<sup>+</sup>, 10), 452 (M – H, 8), 438 (M – Me, 3), 436 (M – OH, 5), 435 (M – H<sub>2</sub>O, 10), 326 (M – C<sub>9</sub>H<sub>19</sub>, 10), 313 (M – C<sub>10</sub>H<sub>20</sub>, 30), 272 (M -C<sub>11</sub>H<sub>23</sub>CN, 50), 257 [Ph<sub>2</sub>P(O)CH(Me)CO, 40], 253  $(M + H, - Ph_2PO, 40), 252 (M - Ph_2PO, 38), 230$ [Ph<sub>2</sub>P(O)Et, 85], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 100], 202 (Ph<sub>2</sub>POH, 60), 201 (Ph<sub>2</sub>PO, 55) and 77 (Ph, 15).

By method A. Dodecanal oxime (0.47 g, 2.3 mmol) and the phosphine oxide **2b** (0.5 g, 2.0 mmol) gave a white solid. <sup>1</sup>H NMR showed that the ratio of the two diastereoisomers was 4:1. Flash column chromatography on silica (100 g) eluting with ether gave the *anti*-4,5-dihydroisoxazole **4j** (470 mg, 53%).

(1'R\*,5R\*)- and (1'R\*,5S\*)-5-(1'-Diphenylphosphinoylethyl)-3-phenyl-4,5-dihydroisoxazoles 4k and 5k.—By method B. The phosphine oxide 2b 5.005 g, 19.5 mmol), benzaldehyde oxime (2.6 cm<sup>3</sup>, 30 mmol),  $CH_2Cl_2$  (150 cm<sup>3</sup>), and aqueous NaOCl (2 mol dm<sup>-3</sup>; 25 cm<sup>3</sup>, 50 mmol) were sonicated for 11 h. The residue was purified by column chromatography on SiO<sub>2</sub>, eluting with EtOAc-hexane (85:15) then EtOAc. The first compound isolated was the anti-dihydroisoxazole 4k (5.718 g, 78%) as needles, m.p. (from EtOAc-hexane) 228-230 °C (Found: C, 73.3; H, 5.9; N, 4.0; P, 8.25. C<sub>23</sub>H<sub>22</sub>NO<sub>2</sub>P requires C, 73.6; H, 5.9; N, 3.9; P, 8.3%);  $R_{\rm F}$  (EtOAc) 0.37;  $v_{\rm max}/{\rm cm}^{-1}$ (CDCl<sub>3</sub>) 3100-3000 (aryl CH), 3000-2800 (CH), 1670 (C=N), 1590 (Ph), 1435 (P-Ph), 1190 (P=O) and 1110 (C-O); δ<sub>H</sub>(CDCl<sub>3</sub>) 1.18 (3 H, dd, J 7.1 and 15.8, Me), 3.06 (1 H, dqd, J 3.3, 7.1 and 8.6, PCH), 3.29 (1 H, dd, J 11.2 and 17.4, 4-H<sub>A</sub>H<sub>B</sub>), 3.66 (1 H, dd, J 8.7 and 17.8, 4-H<sub>A</sub>H<sub>B</sub>), 4.89 (1 H, tdd, J 3.4, 8.6 and 11.3, OCH), 7.35-7.57 (9 H, m, Ph<sub>2</sub>PO and PhCN), 7.65-7.70 (2 H, m, Ph<sub>2</sub>PO and PhCN) and 7.78-7.90 (4 H, m, Ph<sub>2</sub>PO and PhCN);  $\delta_{\rm C}({\rm CDCl}_3)$  5.8 (Me), 35.6 (d, J68, PCH), 35.6 (CH<sub>2</sub>), 79.4 (d, J5, OC), 126.8, 127.4, 128.6, 128.7, 128.8, 128.9, 129.0, 129.1, 129.2 (NC-C<sub>arvl</sub>), 130.1,130.6, 130.7, 130.8, 131.8(d, J 95, ipso C), 131.9, 132.0 and 157.4 (C=N); m/z 230 [Ph<sub>2</sub>P(O)Et, 18], 202 (Ph<sub>2</sub>POH, 14), 201 (Ph<sub>2</sub>PO, 20), 121 (PhCH<sub>2</sub>NO, 49), 105 (PhCH<sub>2</sub>N, 70) and 77 (Ph, 100). The second compound isolated was the syn-4,5-dihydroisoxazole 5k (1.120 g, 15%) as needles, m.p. (EtOAc-hexane) 169-170 °C (Found: M<sup>+</sup>, 375.1395.  $C_{23}H_{22}NO_2P$  requires *M*, 375.1388);  $R_F$  (EtOAc) 0.22;

 $v_{max}/cm^{-1}(CDCl_3)$  3100–3000 (aryl CH), 3000–2800 (CH), 1600 (Ph), 1435 (P–Ph), 1185 (P=O) and 1120 (C–O);  $\delta_{H}(CDCl_3)$  1.29 (3 H, dd, J 7.1 and 16.6, Me), 2.82 (1 H, quintuplet d, J 7.3 and 11.3, PCH), 3.26 (2 H, d, J 9.5, 4-H<sub>2</sub>), 4.92 (1 H, br quintet, J ca. 8, OCH), 7.32–7.38 (3 H, m, Ph<sub>2</sub>PO and PhCN), 7.48–7.58 (8 H, m, Ph<sub>2</sub>PO and PhCN) and 7.78–7.86 (4 H, m, Ph<sub>2</sub>PO and PhCN);  $\delta_{C}(CDCl_3)$  11.1 (Me), 38.5 (d, J 68, PCH), 39.2 (CH<sub>2</sub>), 80.5 (OCH), 126.5, 128.5, 128.6, 128.7, 129.7 (d, J 117, *ipso* C), 129.9 (NC-C<sub>aryl</sub>), 131.0, 131.1, 131.3, 131.4, 131.8, 132.1 (d, J 96, *ipso* C) and 157.2 (C = N); *m*/z 375 (M<sup>+</sup>, 0.4%), 272 (M<sup>+</sup> – PhCN, 0.4), 230 [Ph<sub>2</sub>(P(O)Et, 100], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 45], 202 (Ph<sub>2</sub>POH, 52), 201 (Ph<sub>2</sub>PO, 32) and 77 (Ph, 49).

By method A. Aqueous NaOCl (2 mol dm<sup>-3</sup>; 1.5 cm<sup>3</sup>, 3 mmol) was added to a stirred solution of the phosphine oxide **2b** (215 mg, 0.84 mmol) and benzaldehyde oxime (0.15 cm<sup>3</sup>) in CH<sub>2</sub>Cl<sub>2</sub> (10 cm<sup>3</sup>), and the mixture stirred for 10 d, with more oxime and bleach added after 4 and after 6 d. Work-up gave a residue which was purified by column chromatography on SiO<sub>2</sub>, eluting with 15% hexane in EtOAc to give the *anti*-4,5-dihydroisoxazole **5k** (66 mg, 21%).

(1'R\*,5R\*)- and (1'R\*,5S\*)-5-(1'-Diphenylphosphinoylethyl)-3-ethoxycarbonyl-4,5-dihydroisoxazoles 41 and 51.—By method F. Triethylamine (0.11 cm<sup>3</sup>, 0.8 mmol), the phosphine oxide 2b (100 mg, 0.39 mmol), and ethyl chlorooximidoacetate (121 mg, 0.8 mmol) gave an oil which was purified by column chromatography on  $SiO_2$ , eluting with EtOAc-hexane (3:1). The first fraction isolated contained the 4,5-dihydroisoxazoles 41 and 51 (64 mg, 44%) as an 80:20 mixture of diastereoisomers 41 and 51, respectively, as a pale yellow oil which slowly crystallised (Found:  $M^+$ , 371.1281.  $C_{20}H_{22}NO_4P$  requires *M*, 371.1287);  $R_F$ (EtOAc-hexane, 3:1) 0.31;  $v_{max}/cm^{-1}(CHCl_3)$  2970–2780 (CH), 1715 (C=O), 1590 (Ph), 1460 (P-Ph), 1185 (P=O) and 1115 (C–O);  $\delta_{\rm H}$ (CDCl<sub>3</sub>) 1.15 (3 H<sub>4</sub>, dd, J 7 and 15.5, MeCH), c. 1.2 (3 H<sub>51</sub>, largely obscured by **41**, *Me*CH), 1.33 (3 H<sub>41</sub>, t, J 7.2, *Me*CH<sub>2</sub>), 1.39 (3 H<sub>51</sub>, t, J 7, *Me*CH<sub>2</sub>), 2.96–3.11 (1 H<sub>41</sub>) and 51, m, PCH), 3.15 (1 H<sub>41</sub>, dd, J 11.5 and 18.7, 4-H<sub>A</sub>H<sub>B</sub>), c. 3.18 (1 H<sub>5</sub>, dd largely obscured by 4l, smaller J 7.5, 4- $H_AH_B$ ), c. 3.4 (1 H<sub>s</sub>, dd partially obscured by 4l, smaller J 4, 4-H<sub>A</sub>H<sub>B</sub>), 3.47 (1 H<sub>4</sub>, dd, J 9.3 and 18.6, 4-H<sub>A</sub>H<sub>B</sub>), 4.31 (2 H<sub>4</sub>, q, J 7.2,  $MeCH_2$ ), 4.42 (2 H<sub>51</sub>, q, J 7.2,  $MeCH_2$ ), 4.94 (1 H<sub>41 and 51</sub>, 51 obscured by 41, 41 tdd, J 4.0, 9.2 and 11.7, OCH), 7.45-7.58 (6  $H_{41 \text{ and } 51}$ , m,  $Ph_2PO$ ) and 7.68–7.86 (4  $H_{41 \text{ and } 51}$ , m, Ph<sub>2</sub>PO);  $\delta_{C}(CDCl_{3})$  6.0 (MeCH 4l), 11.4 (MeCH 5l), 14.0 (MeCH<sub>2</sub> 5l), 14.1 (MeCH<sub>2</sub> 4l), 28.8 (C-4 5l), 34.3 (C-4 4l), 35.5 (d, J 68, OCH 41), 37.0 (d, J 68, PCH 51), 62.0 (CH<sub>2</sub>Me 41), 62.7 (CH<sub>2</sub>Me 5l), 70.8 (C-O 5l), 82.3 (d, J 4, C-O 4l), 128.6, 128.7, 128.8, 128.9, 129.0, 129.1, 130.6, 130.7, 130.7, 130.8, 130.9, 131.0, 131.7, 131.8, 132.1, 132.1, 152.5 (C=O 4I), and 160.2 (C=N 4I); m/z 371 (M<sup>+</sup>, 1.5%), 298 (M<sup>+</sup> - CO<sub>2</sub>Et, 27), 272 (M<sup>+</sup>) NCCO<sub>2</sub>Et, 6), 256 [Ph<sub>2</sub>P(O)C<sub>4</sub>H<sub>7</sub>, 6)], 230 [Ph<sub>2</sub>P(O)Et, 100], 202 (Ph<sub>2</sub>POH, 86), 201 (Ph<sub>2</sub>PO, 97) and 77 (Ph, 42). The second fraction was the phosphine oxide 2b (63 mg, 63%, not recrystallised).

 $(1'R^*,5R^*)$ - and  $(1'R^*,5S^*)$ -5-(1'-Diphenylphosphinoylethyl)-3-methoxycarbonylethyl-4,5-dihydroisoxazoles **4m** and **5m**.—By method G. Methyl 4-nitrobutyrate<sup>21</sup> (0.86 g, 5.9 mmol), the phosphine oxide **2b** (0.5 g, 2.0 mmol) and phenyl isocyanate (1.74 g, 1.6 cm<sup>3</sup>, 14.6 mmol) gave a brown gum. Attempted purification by flash column chromatography on silica (200 g) eluting with ethyl acetate–hexane (2:1) failed to separate the two diastereoisomers. The product mixture was recolumned on silica (20 g) eluting with ethyl acetate. The first product to be eluted was the anti-4,5-dihydroisoxazole **4m** (460 mg, 61%), as a gum (Found: M – OMe, 354.1277. C<sub>20</sub>H<sub>21</sub>NO<sub>3</sub>P requires 354.1259);  $v_{max}/cm^{-1}$  (CHCl<sub>3</sub>) 1725 (C=O), 1595 (C=N), and 1440 (P–Ph);  $\delta_{\rm H}$ (CDCl<sub>3</sub>) 1.12 (3 H, dd, J 7.1, 15.7, CH*Me*), 2.58–2.62 (4 H, m, CH<sub>2</sub>CH<sub>2</sub>CO), 2.88 (1 H, dd, J 11.0, 17.9, 4-CH<sub>A</sub>H<sub>B</sub>), 2.87–3.05 (1 H, m, PCH), 3.25 (1 H, dd, J 8.3, 17.9, 4-CH<sub>A</sub>H<sub>B</sub>), 3.66 (3 H, s, OMe), 7.45–7.50 (6 H, m, Ph<sub>2</sub>P) and 7.74–7.84 (4 H, m, Ph<sub>2</sub>P); *m/z* 354 (M – OMe, 7%), 230 [Ph<sub>2</sub>P(O)Et, 100], 229 [Ph<sub>2</sub>P(O)CHMe, 30], 201 (Ph<sub>2</sub>PO, 50) and 77 (Ph, 20). The second compound to be eluted was the syn-4,5-*dihydroisoxazole* **5m** (95 mg, 13%), as a gum (Found: M – OMe, 354.1265. C<sub>20</sub>H<sub>21</sub>NO<sub>3</sub>P requires 354.1259);  $\nu_{max}/cm^{-1}$ (CHCl<sub>3</sub>) 1730 (C=O), 1595 (C=N) and 1440 (P–Ph);  $\delta_{\rm H}$ (CDCl<sub>3</sub>) 1.21 (3 H, dd, J 7.2, 16.6, CH*Me*), 2.49–2.60 (4 H, m, CH<sub>2</sub>CH<sub>2</sub>), 2.61–2.77 (1 H, m, PCH), 2.86 (2 H, d, J 9.5, CH<sub>2</sub>CHO), 3.66 (3 H, s, OMe), 4.72 (1 H, dq, J 7.5, 9.5, CHO), 7.44–7.57 (6 H, m, Ph<sub>2</sub>P) and 7.74–7.85 (4 H, m, Ph<sub>2</sub>P); *m/z* 354 (*M* – OMe, 7%), 230 [Ph<sub>2</sub>P(O)Et, 100], 201 (Ph<sub>2</sub>PO, 5) and 77 (Ph, 20).

(1'R\*,5R\*)- and (1'R\*,5S\*)-5-(1'-Diphenylphosphinoylethyl)-3-methoxycarbonylpropyl-4,5-dihydroisoxazoles 4n and 5n.—By method A. Methyl 5-hydroxyiminopentanoate (1.35 g, 7.8 mmol) and the phosphine oxide 2b (1.0 g, 4.0 mmol) gave a pale yellow oil which was purified by flash column chromatography on silica (200 g) eluting with ethyl acetate. The first fraction was the anti-4,5-dihydroisoxazole 4n (855 mg, 55%), as needles, m.p. 109-110 °C (from EtOAc) (Found: M - OMe, 368.1384.  $C_{21}H_{23}NO_3P$  requires 368.1416);  $v_{max}/cm^{-1}$  (CDCl<sub>3</sub>) 1735 (C=O), 1605 (C=N), 1430 (P-Ph) and 1190 (P=O);  $\delta_{H}$ (CDCl<sub>3</sub>) 1.13 (3 H, dd, J 7.1, 15.7, CHMe), 1.89 (2 H, quintet, J 7.4, NCCH<sub>2</sub>CH<sub>2</sub>), 2.33 (2 H, t, J 7.4, NCCH<sub>2</sub>CH<sub>2</sub> or CH<sub>2</sub>CO<sub>2</sub>), 2.34 (2 H, t, J 7.4, NCCH<sub>2</sub>CH<sub>2</sub> or CH<sub>2</sub>CO<sub>2</sub>), 2.87 (1 H, dd, J 10.8, 17.8, 4-CH<sub>A</sub>H<sub>B</sub>), 2.86–2.95 (1 H, m, PCH), 3.23 (1 H, dd, J 8.0, 17.8, 4.CH<sub>A</sub>H<sub>B</sub>), 3.65 (3 H, s, OMe), 4.69-4.73 (1 H, m, CHO), 7.45-7.55 (6 H, m, Ph<sub>2</sub>P) and 7.74-7.85 (4 H, m, Ph<sub>2</sub>P); m/z 368 (M – OMe, 45%), 326 (M – OMe, CO, CH<sub>2</sub>, 15), 298  $(M - C_3H_6CO_2Me, 3), 272 [M - NC(CH_2)_3CO_2Me, 25],$ 257 [Ph<sub>2</sub>P(O)C<sub>3</sub>H<sub>4</sub>O, 20], 256 [Ph<sub>2</sub>P(O)CH(Me)CHCH<sub>2</sub>, 25], 230 [Ph<sub>2</sub>P(O)Et, 100], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 55], 202 (Ph<sub>2</sub>POH, 35), 201, (Ph<sub>2</sub>PO, 35) and 77 (Ph, 35). The second fraction to be eluted contained a mixture of the two diastereoisomers 4n and 5n in a ratio of 1:1 by <sup>1</sup>H NMR. This mixture was separated by HPLC eluting with chloroform-methanol (50:1) to give the anti-4,5-dihydroisoxazole 4n (60 mg, 4%), and the syn-4,5*dihydroisoxazole* **5n** (86 mg, 6%), as needles, m.p. 133.5–134.5 °C (from EtOAc) (Found:  $M^+$ , 399.1574. C<sub>22</sub>H<sub>26</sub>NO<sub>4</sub>P requires *M*, 399.1599);  $v_{max}/cm^{-1}$  (CDCl<sub>3</sub>) 1730 (C=O), 1605 (C=N), 1430 (P–Ph) and 1180 (P=O);  $\delta_{\rm H}$  (CDCl<sub>3</sub>) 1.22 (3 H, dd, J 7.3, 16.5, CHMe), 1.82 (2 H, br quintet, J7, NCCH<sub>2</sub>CH<sub>2</sub>), 2.28 (2 H, t, J 7.1, NCCH<sub>2</sub>CH<sub>2</sub> or CH<sub>2</sub>CO<sub>2</sub>), 2.33 (2 H, t, J 7.1, NCCH<sub>2</sub>CH<sub>2</sub> or CH<sub>2</sub>CO<sub>2</sub>), 2.69–2.79 (1 H, m, PCH), 2.86 (2 H, d, J 9.5, 4-CH<sub>2</sub>), 3.66 (3 H, s, OMe), 4.69–4.73 (1 H, m, CHO), 7.45-7.57 (6 H, m, Ph<sub>2</sub>P) and 7.75-7.86 (4 H, m, Ph<sub>2</sub>P); m/z 400 (M + H, 7%), 399  $(M^+, 4)$ , 368 (M - OMe, 5), 272 [M - NC-(CH<sub>2</sub>)<sub>3</sub>CO<sub>2</sub>Me, 2], 230 [Ph<sub>2</sub>P(O)Et, 100], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 35], 202 (Ph<sub>2</sub>POH, 60), 201 (Ph<sub>2</sub>PO, 40) and 77 (Ph, 30).

 $(1'R^*,5R^*)$ - and  $(1'R^*,5S^*)$ -5-(1'-Diphenylphosphinoylpropyl)-3-undecyl-4,5-dihydroisoxazoles **40** and **50**.—By method A. Dodecanal oxime (1.50 g, 7.5 mmol) and the phosphine oxide **2c** (1.50 g, 5.5 mmol) gave a yellow oily solid which was purified by flash column chromatography on silica (300 g) eluting with ethyl acetate-dichloromethane (1:1). The first compound to be eluted was the phosphine oxide **2c** (912 mg, 61% recovery). The second fraction to be eluted contained a mixture of the two 4,5dihydroisoxazoles. Separation by HPLC eluting with chloroform-methanol (100:1) gave the anti-4,5-dihydroisoxazole **40** (434 mg, 17%), as needles, m.p. 92–94 °C (from EtOAc) (Found: C, 74.3; H, 9.0; N, 3.2; P, 6.3%; M<sup>+</sup>, 467.2915. C<sub>29</sub>H<sub>42</sub>NO<sub>2</sub>P requires C, 74.5; H, 9.05; N, 3.0; P, 6.6%; M, 467.2953);  $v_{max}/cm^{-1}$  (CDCl<sub>3</sub>) 1595 (C=N), 1430 (P-Ph) and

1190 (P=O); δ<sub>H</sub>(CDCl<sub>3</sub>) 0.81 (3 H, t, J 7.5, PCHCH<sub>2</sub>Me), 0.86  $[3 H, t, J 6.2, (CH_2)_{10}Me], 1.2-1.3 [16 H, m, (CH_2)_8Me], 1.48-$ 1.54 (2 H, m, CH<sub>2</sub>CH<sub>2</sub>CN), 1.67–1.82 (2 H, m, PCHCH<sub>2</sub>Me), 2.28 (2 H, t, J 7.6, CH<sub>2</sub>CH<sub>2</sub>CN), 2.78-2.89 (2 H, m, PCH and 4-CH<sub>A</sub>H<sub>B</sub>), 3.19 (1 H, dd, J 9.4, 17.9, 4-CH<sub>A</sub>H<sub>B</sub>), 4.63-4.71 (1 H, m, CHO), 7.43-7.54 (6 H, m, Ph<sub>2</sub>P) and 7.78-7.89 (4 H, m, Ph<sub>2</sub>P); m/z 467 (M<sup>+</sup>, 5%), 466 (M – H, 5), 452 (M – Me, 2), 450 (M – OH, 4), 449 (M – H<sub>2</sub>O, 4), 438 (M – Et, 3), 340  $(M - C_9H_{19}, 5), 327 (M - C_{10}H_{20}, 15), 312 (M - C_{11}H_{23}, 8),$ 286  $(M - C_{11}H_{23}CN, 10)$ , 266  $(M - Ph_2PO, 30)$ , 258  $[Ph_2P(O)C_3H_5O, 50], 244 [Ph_2P(O)C_3H_7, 100], 229 [Ph_2P(O)C_2H_4, 90], 202 (Ph_2POH, 30), 201 (Ph_2PO, 40) and 77$ (Ph, 15); and the syn 4,5-dihydroisoxazole 50 (120 mg, 5%), as needles, m.p. 71-72 °C (from EtOAc-hexane) (Found: C, 74.4; H, 9.3; N, 3.1; P, 6.85%; M<sup>+</sup>, 467. 2962. C<sub>29</sub>H<sub>42</sub>NO<sub>2</sub>P requires C, 74.5; H, 9.05; N, 3.0; P, 6.6%; M, 467.2953);  $\nu_{max}/cm^{-1}$ (CDCl<sub>3</sub>) 1 595 (C=N), 1 430 (P-Ph) and 1 185 (P=O);  $\delta_{\rm H}({\rm CDCl}_3)$  0.87 [3 H, t, J 6.4, (CH<sub>2</sub>)<sub>10</sub>Me], 0.98 (3 H, t, J 7.4, PCHCH<sub>2</sub>Me), 1.01-1.43 [18 H, m, (CH<sub>2</sub>)<sub>9</sub>Me], 1.6-1.7 (2 H, m, PCHCH<sub>2</sub>Me), 2.18 (2 H, t, J 7.5, CH<sub>2</sub>CH<sub>2</sub>CN), 2.5-2.6 (1 H, m, PCH), 2.79 (1 H, dd, J 10.3, 18.1, 4-CH<sub>A</sub>H<sub>B</sub>), 2.96 (1 H, dd, J 9.1, 18.1, 4-CH<sub>A</sub>H<sub>B</sub>), 4.72-4.91 (1 H, m, CHO), 7.46-7.53 (6 H, m,  $Ph_2P$ ) and 7.76–7.85 (4 H, m,  $Ph_2P$ ); M/z 467 (M<sup>+</sup>, 2%), 466 (M - H, 2), 340 (M - C<sub>9</sub>H<sub>19</sub>, 2), 327 (M - C<sub>10</sub>H<sub>20</sub>, 4), 312  $(M - C_{11}H_{23}, 3)$ , 286  $(M - C_{11}H_{23}CN, 40)$ , 271  $(M - C_{11}H_{23}CN, Me, 20), 266 (M - Ph_2PO, 25), 258$  $[Ph_2P(O)C_3H_5O, 30], 244 [Ph_2P(O)C_3H_7, 80],$ 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 70], 202 (Ph<sub>2</sub>POH, 35), 201 (Ph<sub>2</sub>PO, 50), 77 (Ph, 30) and 57 (C<sub>4</sub>H<sub>9</sub>, 100).

(1'R\*, 5R\*)- and (1'R\*, 5S\*)-5-(1'-Diphenylphosphinoylpropyl)-3-methoxycarbonylpropyl-4,5-dihydroisoxazoles 4p and 5p. -By method A. Methyl 5-hydroxyiminopentanoate (1.1 g, 7.4 mmol) and the phosphine oxide 2c (1.0 g, 3.6 mmol) gave a brown oil which was purified by flash column chromatography on silica (100 g) eluting with ethyl acetate. The first fraction to be eluted was the phosphine oxide 2c (470 mg, 47% recovery). The second fraction to be eluted contained a mixture of 4p and 5p and the phosphine oxide 2c. This fraction was purified by HPLC eluting with chloroform-methanol (50:1) to give the anti-4,5-dihydroisoxazole 4p (184 mg, 12%), as needles, m.p. 101-102 °C (from EtOAc) (Found: M<sup>+</sup>, 413.1741. C<sub>23</sub>H<sub>28</sub>-NO<sub>4</sub>P requires *M*, 413.1776);  $v_{max}/cm^{-1}(CDCl_3)$  1735 (C=O), 1605 (C=N), 1435 (P-Ph) and 1190 (P=O);  $\delta_{\rm H}$ (CDCl<sub>3</sub>) 0.81 (3 H, t, J 7.5, CH<sub>2</sub>Me), 1.63-1.82 (2 H, m, CH<sub>2</sub>Me), 1.88 (2 H, br quintet, J 7.4, CH<sub>2</sub>CH<sub>2</sub>CO), 2.33 (2 H, t, J 7.4, CH<sub>2</sub>CO<sub>2</sub> or CH<sub>2</sub>CH<sub>2</sub>CN), 2.35 (2 H, t, J 7.4, CH<sub>2</sub>CO<sub>2</sub> or CH<sub>2</sub>CH<sub>2</sub>CN), 2.76-2.85 (1 H, m, PCH), 2.84 (1 H, dd, J11.2, 18.0, 4-CH<sub>A</sub>H<sub>B</sub>), 3.20 (1 H, dd, J 9.5, 18.0, 4-CH<sub>A</sub>H<sub>B</sub>), 3.65 (3 H, s, OMe), 4.62-4.74 (1 H, m, CHO), 7.43-7.55 (6 H, m, Ph<sub>2</sub>P) and 7.78-7.87 (4 H, m, Ph<sub>2</sub>P); m/z 414 (M + H, 30%), 413 (M<sup>+</sup>, 30), 412 (M -H, 20), 396 (M – OH, 25), 382 (M – OMe, 70), 340 (M –  $CH_2CO_2Me$ , 15), 312 [M - (CH<sub>2</sub>)<sub>3</sub>CO<sub>2</sub>Me, 5], 271  $\Gamma Ph_2^{-}P(O)C_5H_{10},$ 15], 244  $[Ph_2P(O)C_3H_7,$ 75], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 100], 202 (Ph<sub>2</sub>POH, 60), 201 (Ph<sub>2</sub>PO, 80) and 77 (Ph, 30); and a mixture of the phosphine oxide 2c and the syn-4,5-dihydroisoxazole 5p in the ratio of 2:1 (310 mg, 21% of **2c** and 7% of **5p**) as a white solid (Found: M - OMe, 382.1543.  $C_{22}H_{25}NO_3P$  requires 382.1572). The mixture had  $v_{max}/cm^{-1}$ -(CDCl<sub>3</sub>) 1730 (C=O), 1600 (C=N), 1435 (P-Ph) and 1180 (P=O);  $\delta_{\rm H}$ (CDCl<sub>3</sub>) 0.92 (3 H, t, J 7.4, Me of alkene), 0.95 (3 H, t, J 7.4, CH<sub>2</sub>Me of 4,5-dihydroisoxazole), 1.56-1.91 (6 H, m,  $CH_2Me$  of both compounds and  $CH_2CH_2CN$  of 4,5dihydroisoxazole), 2.24 (2 H, t, J 7.4, CH<sub>2</sub>CH<sub>2</sub>CN or CH<sub>2</sub>CO<sub>2</sub> of 4,5-dihydroisoxazole), 2.31 (2 H, t, J 7.3, CH<sub>2</sub>CH<sub>2</sub>CN or CH<sub>2</sub>CO<sub>2</sub> of 4,5-dihydroisoxazole), 2.54–2.65 (1 H, m, PCH of 4,5-dihydroisoxazole), 2.79 (1 H, dd, J 10.5, 17.5, 4-CH<sub>A</sub>H<sub>B</sub> of 4,5-dihydroisoxazole), 2.82-2.94 (1 H, m, PCH of alkene), 3.00

(1 H, dd, J 9.1, 17.5, 4-CH<sub>A</sub>H<sub>B</sub> of 4,5-dihydroisoxazole), 3.65 (3 H, s, OMe of 4,5-dihydroisoxazole), 4.76–4.92 (1 H, m, CHO of 4,5-dihydroisoxazole), 4.96–5.05 (1 H, m, CH=CH<sub>A</sub>H<sub>B</sub> of alkene), 5.11–5.28 (1 H, m, CH=CH<sub>A</sub>H<sub>B</sub> of alkene), 5.60–5.77 (1 H, m, CH=CH<sub>2</sub> of alkene), 7.38–7.57 (12 H, m, Ph<sub>2</sub>P of both compounds) and 7.67–7.89 (8 H, m, Ph<sub>2</sub>P of both compounds).

 $(1'R^*, 5R^*)$ - and  $(1'R^*, 5S^*)$ -5-(1'-Diphenylphosphinoylbutyl)-3-undecyl-4,5-dihydroisoxazoles 4q and 5q.—By method A. Dodecanal oxime (1.05 g, 5.2 mmol) and the phosphine oxide 2d (1.0 g, 3.6 mmol) gave a white solid which was purified by flash column chromatography on silica (100 g) eluting with ethyl acetate. The first fraction to be eluted gave a clear gum which was tentatively identified by <sup>1</sup>H NMR as 3,4-diundecylfurazan 2-oxide. The second fraction contained a mixture of the two isoxazolines. The third fraction contained the phosphine oxide 2d (0.7 g, 70% recovery). The mixed fraction was separated by HPLC eluting with chloroform-methanol (200:1) to give the anti-4,5-dihydroisoxazole 4q (370 mg, 22%), as needles, m.p. 92-94.5 °C (from EtOAc) (Found: C, 75.0; H, 9.5; N, 3.0; P, 6.7%; M<sup>+</sup>, 481.3070. C<sub>30</sub>H<sub>44</sub>NO<sub>2</sub>P requires C, 74.8; H, 9.2; N, 2.9; P,  $6.4^{\circ}_{0}; M, 481.3109); \nu_{max}/cm^{-1}(CDCl_{3}) 1610(C=N), 1440(P-Ph)$ and 1190 (P=O);  $\delta_{\rm H}$  (CDCl<sub>3</sub>) 0.72 [3 H, t, J 7.2, PCH(CH<sub>2</sub>)<sub>2</sub>Me],  $0.86[3H, t, J6.6, (CH_2)_{10}Me], 1.03-1.23[16H, m, (CH_2)_8Me],$ 1.34-1.77 (6 H, m, PCHCH<sub>2</sub>CH<sub>2</sub> and CH<sub>2</sub>CH<sub>2</sub>CN), 2.28 (2 H, t, J 7.5, CH<sub>2</sub>CH<sub>2</sub>CN), 2.82 (1 H, dd, J 11.0, 17.9, 4-CH<sub>A</sub>H<sub>B</sub>), 2.81-2.91 (1 H, m, PCH), 3.20 (1 H, dd, J 9.4, 17.9, 4-CH<sub>A</sub>H<sub>B</sub>), 4.62-4.70 (1 H, m, CHO), 7.42-7.54 (6 H, m, Ph<sub>2</sub>P) and 7.77-7.86 (4 H, m,  $Ph_2P$ ); m/z 482 (M + H, 6%), 481 (M<sup>+</sup>, 5), 480  $(M - H, 10), 452(M - Et, 10), 439(M - C_3H_6, 5), 438(M - C_3H_6, 5))$  $C_3H_7$ , 4), 396 (M -  $C_6H_{13}$ , 2), 354 (M -  $C_9H_{19}$ , 10), 341  $(M - C_{10}H_{20}, 15), 326 (M - C_{11}H_{23}, 6), 300 (M - C_{10}H_{20}, 6), 300$  $C_{11}H_{23}CN$ , 13), 299 (M -  $C_{11}H_{24}CN$ , 15), 280 (M -  $Ph_2PO$ , 50), 258 [Ph<sub>2</sub>P(O)C<sub>4</sub>H<sub>9</sub>, 60], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 100], 201 (Ph<sub>2</sub>PO, 25), and 77 (Ph, 6); and the syn-4,5-dihydroisoxazole 5q (180 mg, 11%), as needles, m.p. 88-92 °C (from EtOAc) (Found: C, 74.5; H, 9.2; N, 2.7; P, 6.6. C<sub>30</sub>H<sub>44</sub>NO<sub>2</sub>P requires C, 74.8; H, 9.2; N, 2.9; P, 6.4%);  $v_{max}/cm^{-1}(CDCl_3)$  1610 (C=N), 1435 (P-Ph) and 1185 (P=O);  $\delta_{\rm H}$ (CDCl<sub>3</sub>) 0.73 [3 H, t, J7.1, PCH(CH<sub>2</sub>)<sub>2</sub>Me],  $0.87[3 \text{ H}, t, J6.8, (CH_2)_{10}Me], 1.24-1.75[22 \text{ H}, \text{m}, (CH_2)_9\text{Me}),$ and PCHCH<sub>2</sub>CH<sub>2</sub>], 2.18 (2 H, t, J7.5, CH<sub>2</sub>CH<sub>2</sub>CN), 2.60-2.71 (1 H, m, PCH), 2.81 (1 H, dd, J 10.4, 17.5, 4-CH<sub>A</sub>H<sub>B</sub>), 2.99 (1 H, dd, J 9.1, 17.5, 4-CH<sub>A</sub>H<sub>B</sub>), 4.7–4.9 (1 H, m, CHO), 7.42–7.55 (6 H, m, Ph<sub>2</sub>P) and 7.76–7.86 (4 H, m, Ph<sub>2</sub>P); m/z 482 (M + H, 10%), 481 (M<sup>+</sup>, 7), 480 (M - H, 15), 465 (M - O, 5), 464 $(M - OH, 3), 463 (M - H_2O, 4), 452 (M - Et, 7), 439 (M - H_2O, 4))$  $C_{3}H_{6}$ , 5), 354 (M -  $C_{9}H_{19}$ , 5), 341 (M -  $C_{10}H_{20}$ , 20), 326  $(M - C_{11}H_{23}, 10), 300 (M - C_{11}H_{23}CN, 20), 299 (M - C_{11}H_{23}CN, 20), 200 (M - C$  $C_{11}H_{24}$  CN, 22), 280 (M - Ph<sub>2</sub>PO, 75), 271 [Ph<sub>2</sub>P(O)C<sub>5</sub>H<sub>10</sub>, 30], 258 [Ph<sub>2</sub>P(O)C<sub>4</sub>H<sub>9</sub>, 60], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 100)] 201  $(Ph_2PO, 20)$  and 77 (Ph, 15) (Found:  $M^+ - H$ , 480.3054. C<sub>30</sub>H<sub>43</sub>NO<sub>2</sub>P requires 480.3031).

(1'R\*,5R\*)- and (1'R\*,5S\*)-5-(1'-Diphenylphosphinoylbutyl)-3-phenyl-4,5-dihydroisoxazoles 4r and 5r.—By method A. The phosphine oxide 2d (281 mg, 1 mmol), benzaldehyde oxime (0.17 cm<sup>3</sup>, 2 mmol), CH<sub>2</sub>Cl<sub>2</sub> (10 cm<sup>3</sup>), and aqueous NaOCl (2 mol dm<sup>-3</sup>; 1.5 cm<sup>3</sup>, 3 mmol) were stirred together for 19 d, with more oxime and NaOCl added after 5, 11 and 15 d. The residue was purified by column chromatography on SiO<sub>2</sub>, eluting with EtOAc-hexane (85:15). The first compound isolated was the anti-4,5-dihydroisoxazole 4r (249 mg, 62%) as transparent prisms, m.p. (from EtOAc-hexane) 200–202 °C (Found: C, 74.1; H, 6.5; N, 3.5%; M<sup>+</sup> – Et, 374.1337. C<sub>25</sub>H<sub>26</sub>NO<sub>2</sub>P requires C, 74.4; H, 6.5; N, 3.5%; M – Et, 374.1310); R<sub>F</sub> (EtOAc-hexane, 9:1) 0.43; v<sub>max</sub>/cm<sup>-1</sup>(CDCl<sub>3</sub>) 3080–2960 (aryl CH), 2960–2750 (CH), 1580 (Ph), 1420 (P-Ph), 1175 (P=O) and 1100 (C-O); δ<sub>H</sub>(CDCl<sub>3</sub>) 0.71 (3 H, t J 7.3, Me), 1.00–1.15 (1 H, m), 1.25–1.39

(1 H, m), 1.62–1.80 (2 H, m), 2.99 (1 H, dtd, J 3.2, 5.8 and 9.1, PCH), 3.26 (1 H, dd, J 11.1 and 17.5, 4-H<sub>A</sub>H<sub>B</sub>), 3.61 (1 H, dd, J 10.1 and 17.7, 4-H<sub>A</sub>H<sub>B</sub>), 4.86 (1 H, dddd, J 3.4, 4.2, 10.0 and 11.0, OCH), 7.36-7.39 (3 H, m, Ph<sub>2</sub>PO and PhCN), 7.40-7.52 (6 H, m, Ph<sub>2</sub>PO and PhCN, 7.65-7.69 (2 H, m, Ph<sub>2</sub>PO and PhCN) and 7.81–7.96 (4 H, m, Ph<sub>2</sub>PO and PhCN);  $\delta_{c}$ (CDCl<sub>3</sub>) 14.2 (Me), 22.8 (d, J 6, CH<sub>2</sub>Me), 24.5 (CH<sub>2</sub>), 36.4 (CH<sub>2</sub>), 40.3 (d, J7, PCH), 80.24 (d, J 5, OCH), 126.7, 128.7, 128.8, 128.9, 129.0, 129.3 (NC-C<sub>aryl</sub>), 130.1, 130.6, 130.7, 130.7, 130.8, 131.9, 132.2 (d, J 94, ipso C) and 157.7 (C=N); m/z 374 (M<sup>+</sup> – Et, 0.3%), 271 ( $M^+$  – Et – PhCN, 1), 258 [Ph<sub>2</sub>P(O)C<sub>3</sub>H<sub>5</sub>O, 38], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 100], 202 (Ph<sub>2</sub>POH, 17), 201 (Ph<sub>2</sub>PO, 28) and 77 (Ph, 29). The second fraction isolated was a mixture of the phosphine oxide 2d (22.5 mg, 8%) and the syn-4,5-dihydroisoxazole 5r (11.5%). The latter was purified by HPLC eluting with EtOAc to give needles, m.p. 202–204 °C (Found:  $M^+ - C_3H_6$ , 361.1236.  $C_{25}H_{26}NO_2P$  requires  $M - C_3H_6$ , 361.1232);  $R_F$ (EtOAc) 0.42; v<sub>max</sub>/cm<sup>-1</sup>(CDCl<sub>3</sub>) 3100-3000 (aryl CH), 3000-2800 (CH), 1720 (C=N), 1590 (Ph), 1430 (P-Ph), 1180 (P=O) and 1110 (C-O);  $\delta_{\rm H}$ (CDCl<sub>3</sub>) 0.76 (3 H, t, J 7.2, Me), 1.30–1.39 (1 H, m), 1.53-1.77 (3 H, m), 2.72 (1 H, quintuplet d, J 3.9 and 6.7, PCH), 3.22 (1 H, dd, J 10.5 and 17.0, 4-H<sub>A</sub>H<sub>B</sub>), 3.40 (1 H, dd, J 9.0 and 17.0, 4-H<sub>A</sub>H<sub>B</sub>), 5.00 (1 H, br quintet, J 9.2, OCH), 7.29-7.35 (3 H, m, Ph<sub>2</sub>PO and PhCN), 7.40-7.51 (8 H, m, Ph<sub>2</sub>PO and PhCN) and 7.77-7.87 (4 H, m, Ph<sub>2</sub>PO and PhCN); m/z 361 (M<sup>+</sup>  $-C_{3}H_{6}$ , 0.1%), 285 (M<sup>+</sup> – PhCN – Me, 0.1), 258 (M<sup>+</sup> PhCN - C<sub>3</sub>H<sub>6</sub>, 32), 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 100], 202 (Ph<sub>2</sub>POH, 12) and 201 (Ph<sub>2</sub>PO, 19).

(1'R\*,5R\*)- and (1'R\*,5S\*)-5-(1'-Diphenylphosphinoylbutyl)-3-methoxycarbonylethyl-4,5-dihydroisoxazoles 4s and 5s.—By method G. Methyl 4-nitrobutanoate<sup>21</sup> (735 mg, 5.0 mmol), the phosphine oxide 2d (0.5 g, 2.0 mmol) and phenyl isocyanate (0.46 g, 0.42 cm<sup>3</sup>, 3.9 mmol) gave a brown oil which was purified by flash column chromatography on silica (150 g) eluting with ethyl acetate. The first compound to be eluted was the phosphine oxide 2d (280 mg, 56% recovery). The second product was a mixture of 4s and 5s in a ratio of 3:1 (<sup>1</sup>H NMR). Separation by HPLC eluting with methanol-chloroform (150:1) gave the anti-4,5-dihydroisoxazole 4s (250 mg, 34%), as needles, m.p. 104-107 °C (from EtOAc) (Found: M - OMe, 382.1569.  $C_{22}H_{25}NO_3P$  requires 382.1572);  $v_{max}/cm^{-1}(CDCl_3)$ 1730 (C=O), 1598 (C=N), 1440 (P-Ph) and 1185 (P=O);  $\delta_{\rm H}({\rm CDCl}_3)$  0.72 (3 H, t, J 7.2, CH<sub>2</sub>Me), 0.93-1.17 (1 H, m,  $CH_AH_BMe$ ), 1.20–1.40 (1 H, m,  $CH_AH_BMe$ ), 1.49–1.75 (2 H, m, CH<sub>2</sub>CH<sub>2</sub>Me), 2.54–2.70 (4 H, m, CH<sub>2</sub>CH<sub>2</sub>CO), 2.79– 2.95 (2 H, m, CHP and 4-CH<sub>A</sub>H<sub>B</sub>), 3.22 (1 H, dd, J 17.5, 9, 4-CH<sub>A</sub>H<sub>B</sub>), 3.66 (3 H, s, OMe), 4.63–4.77 (1 H, m, CHO), 7.44–7.51  $(6H, m, Ph_2P)$  and 7.77–7.85 $(4H, m, Ph_2P)$ ; m/z 382(M - OMe, m)15%), 354 (M – OMe, CO, 2), 258 [Ph<sub>2</sub>P(O)C<sub>4</sub>H<sub>9</sub><sup>+</sup>, 28], 243 [Ph<sub>2</sub>P(O)C<sub>3</sub>H<sub>6</sub>, 3], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 100], 201 (Ph<sub>2</sub>PO, 30) and 77 (Ph, 5); and the syn 4,5-dihydroisoxazole 5s (45 mg, 6%), as needles, m.p. 106–110 °C (from EtOAc) (Found: M – OMe, 382.1567.  $C_{22}H_{25}NO_3P$  requires 382.1572);  $v_{max}/cm^{-1}(CDCl_3)$ 1728 (C=O), 1597 (C=N), 1430 (P-Ph) and 1182 (P=O);  $\delta_{\rm H}({\rm CDCl}_3)$  0.73 (3 H, t, J 7.1, CH<sub>2</sub>Me), 1.16–1.37 (1 H, m, CH<sub>A</sub>H<sub>B</sub>Me), 1.42–1.84 (3 H, m, CH<sub>2</sub>CH<sub>A</sub>H<sub>B</sub>Me), 2.44–2.58 (4 H, m, CH<sub>2</sub>CH<sub>2</sub>CO), 2.55–2.74 (1 H, m, PCH), 2.83 (1 H, dd, J  $10, 17.5, 4-CH_{A}H_{B}$ ,  $3.05(1 H, dd, J9, 17.5, 4-CH_{A}H_{B}), 3.66(3 H, M_{B})$ s, OMe), 4.75-4.93 (1 H, m, CHO), 7.44-7.50 (6 H, m, Ph<sub>2</sub>P) and 7.76-7.86 (4 H, m, Ph<sub>2</sub>P); m/z 382 (M - OMe, 10%), 258  $[Ph_2P(O)C_4H_9^+, 30]$ , 243  $[Ph_2P(O)C_3H_6, 5]$ , 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 100], 201 (Ph<sub>2</sub>PO, 30) and 77 (Ph, 3).

 $(1'R^*,5R^*)$ - and  $(1'R^*,5S^*)$ -5-(1'-Diphenylphosphinoylbutyl)-3-methoxycarbonylpropyl-4,5-dihydroisoxazoles 4t and 5t.—By method A. Methyl 5-hydroxyiminopentanoate (1.0 g, 7.0 mmol) and the phosphine oxide 2d (1.0 g, 3.6 mmol) gave an orange

gum which was purified by flash column chromatography on silica (50 g) eluting with ethyl acetate. The first fraction to be eluted was the phosphine oxide 2d (470 mg, 47% recovery). The third fraction was a mixture of the two diastereoisomers 4t and 5t and the phosphine oxide 2d. Purification by HPLC eluting with chloroform-methanol (100:1) gave as the first fraction the anti-4,5-dihydroisoxazole 4t (147 mg, 10%), as plates, m.p. 111-114 °C (from MeOH-EtOAc) (Found: M<sup>+</sup>, 427.1896.  $C_{24}H_{30}NO_4P$  requires *M*, 427.1913);  $v_{max}/cm^{-1}(CDCl_3)$  1728 (C=O), 1958 (C=N), 1430 (P-Ph) and 1180 (P=O);  $\delta_{H}$ (CDCl<sub>3</sub>) 0.72 (3 H, t, J 7.2,  $CH_2Me$ ), 0.97–1.16 (1 H, m,  $CH_AH_BMe$  or PCHCH<sub>A</sub>H<sub>B</sub>), 1.16–1.39 (1 H, m, CH<sub>A</sub>H<sub>B</sub>Me or PCHCH<sub>A</sub>H<sub>B</sub> 1.46-1.79 (2 H, m, CH<sub>2</sub>Me or PCHCH<sub>2</sub>), 1.87 (2 H, br quintet, J 7.4, CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>), 2.33 (2 H, t, J 7.5, CH<sub>2</sub>CO<sub>2</sub> or CH<sub>2</sub>CH<sub>2</sub>CN), 2.34 (2 H, t, J 7.4, CH<sub>2</sub>CO<sub>2</sub> or CH<sub>2</sub>CH<sub>2</sub>CN), 2.83 (1 H, dd, J 10.9, 17.9, 4-CH<sub>A</sub>H<sub>B</sub>), 2.85-2.90 (1 H, m, PCH), 3.19 (1 H, dd, J 9.4, 17.9, 4-CH<sub>A</sub>H<sub>B</sub>), 3.64 (3 H, s, OMe), 4.62-4.68 (1 H, m, CHO), 7.42-7.54 (6 H, m, Ph<sub>2</sub>P) and 7.77-7.86 (4 H, m, Ph<sub>2</sub>P); m/z 427 (M<sup>+</sup>, 5%), 409 (M –  $\tilde{H}_2$ O, 10), 396 (M OMe, 25), 368 (M - CO<sub>2</sub>Me, 2), 354 (M - CH<sub>2</sub>CO<sub>2</sub>Me, 5), 258  $[Ph_2P(O)C_4H_9, 40]$ , 229  $[Ph_2P(O)C_2H_4, 100]$ , 201 (Ph<sub>2</sub>PO, 30) and 77 (Ph, 100). The second fraction to be eluted was a mixture of the phosphine oxide 2d and 5t in the ratio of 1:1 (210 mg). The third fraction to be eluted was the syn-4,5dihydroisoxazole 5t (105 mg, 7%), as needles, m.p. 115-117 °C (from EtOAc) (Found:  $M^+$ , 427.1901.  $C_{24}H_{30}NO_4P$  requires *M*, 427.1913);  $v_{max}/cm^{-1}$  (CDCl<sub>3</sub>) 1730 (C=O), 1605 (C=N), 1430 (P-Ph) and 1180 (P=O);  $\delta_{\rm H}$ (CDCl<sub>3</sub>) 0.74 (3 H, t, J 7.1, CH<sub>2</sub>Me), 1.22–1.33 (1 H, m, CH<sub>A</sub>H<sub>B</sub>Me or PCHCH<sub>A</sub>H<sub>B</sub>), 1.47– 1.74 (3 H, m, three of PCHCH<sub>2</sub>CH<sub>2</sub>Me), 1.79 (2 H, br quintet, J 7.3, CH<sub>2</sub>CH<sub>2</sub>CO<sub>2</sub>), 2.50 (2H, t, J 7.5, CH<sub>2</sub>CO<sub>2</sub> or CH<sub>2</sub>CH<sub>2</sub>CN), 2.58 (2 H, t, J 7.3, CH<sub>2</sub>CO<sub>2</sub> or CH<sub>2</sub>CH<sub>2</sub>CN), 2.59–2.70 (1 H, m, PCH), 2.80 (1 H, dd, J 10.4, 17.2, 4-CH<sub>A</sub>H<sub>B</sub>), 3.06 (1 H, dd, J 9.0, 17.2, 4-CH<sub>A</sub>H<sub>B</sub>), 3.66 (3 H, s, OMe), 4.73-4.89 (1 H, m, CHO), 7.41–7.56 (6 H, m, Ph<sub>2</sub>P) and 7.76–7.86 (4 H, m, Ph<sub>2</sub>P); m/z 427 (M<sup>+</sup>, 5%), 409 (M – H<sub>2</sub>O, 5), 396 (M – OMe, 25), 354 (M – CH<sub>2</sub>CO<sub>2</sub>Me, 2), 258 [Ph<sub>2</sub>P(O)C<sub>4</sub>H<sub>9</sub>, 40], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 100], 201 (Ph<sub>2</sub>PO, 25) and 77 (Ph, 70).

 $(1'R^*,5R^*)$ - and  $(1'R^*,5S^*)$ -5-(1'-Diphenylphosphinoyl-3'methylbutyl)-3-phenyl-4,5-dihydroisoxazoles 4u and 5u.-By method B. The phosphine oxide 2e (1.071 g, 3.59 mmol), benzaldehyde oxime (1.21 g, 10 mmol), CH<sub>2</sub>Cl<sub>2</sub> (70 cm<sup>3</sup>) and aqueous NaOCl (2 mol dm<sup>-3</sup>; 15 cm<sup>3</sup>, 30 mmol) were sonicated for ca. 25 h over 4 d. The residue was purified by column chromatography on SiO<sub>2</sub>, eluting with EtOAc-hexane (gradient from 1:4 to pure EtOAc). The first compound isolated was the anti-4,5-dihydroisoxazole 4u (781 mg, 46%) as needles, m.p. (MeOAc-hexane) 188-190 °C (Found: C, 74.6; H, 6.7; N, 3.3. C<sub>26</sub>H<sub>28</sub>NO<sub>2</sub>P requires C, 74.8; H, 6.8; N, 3.35); R<sub>F</sub> (EtOAchexane, 9:1)0.47;  $v_{max}/cm^{-1}(CDCl_3)$ 3100–3000 (arylCH), 3000– 2800 (CH), 1720 (C=N), 1595 (Ph), 1435 (P-Ph), 1190 (P=O) and 1110 (C-O); $\delta_{\rm H}$  (CDCl<sub>3</sub>) 0.68 (3 H, d, J 6.5, CMe<sub>A</sub>Me<sub>B</sub>), 0.76 (3 H, d, J 6.5, CMe<sub>A</sub> $Me_B$ ), 1.36 (1 H, nonet, J 6.6, Me<sub>2</sub>CH), 1.57 (2 H, dd, J 6.3 and 13.4, CH<sub>2</sub>), 3.06 (1 H, dtd, J 3.1, 6.0 and 9.1, PCH),  $3.26 (1 \text{ H}, \text{dd}, J 11.1 \text{ and } 17.6, 4-H_AH_B), 3.61 (1 \text{ H}, \text{dd}, J 10.1 \text{ and } 17.6, 4-H_AH_B)$ 17.6, 4-H<sub>A</sub>H<sub>B</sub>), 4.90 (1 H, dddd, J 3.2, 4.5, 10.1 and 11.1, OCH), 7.35-7.40 (3 H, m, Ph<sub>2</sub>PO and PhCN), 7.45-7.54 (6 H, m, Ph<sub>2</sub>PO and PhCN), 7.65–7.68 (2 H, m, Ph<sub>2</sub>PO and PhCN) and 7.80–7.95  $(4 \text{ H}, \text{m}, \text{Ph}_2\text{PO} \text{ and PhCN}); \delta_c(\text{CDCl}_3) 14.2, 22.4 (d, J 33), 26.8$ (d, J7), 31.0 (CH<sub>2</sub>), 36.3 (CH<sub>2</sub>), 38.1 (d, J66, PCH), 80.2, (d, J6, OC), 126.7, 128.6, 128.7, 129.0, 129.1, 129.3 (NC-C<sub>aryl</sub>), 130.1, 130.6, 130.7, 130.8, 130.9, 131.9, 131.9 (d, J 97, ipso-C), 132.0, 132.0(d, J95, ipso-C) and  $157.7(C=N); m/z 272[Ph_2P(O)C_5H_{11}, m/z)$ 15%], 258 [Ph<sub>2</sub>P(O)Bu, 4], 243 [Ph<sub>2</sub>P(O)C<sub>3</sub>H<sub>6</sub>, 7], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 100], 202 (Ph<sub>2</sub>POH, 14) and 201 (Ph<sub>2</sub>PO, 30). The second compound isolated was the phosphine oxide 2e (339 mg, 32%). The third compound isolated was the syn-isoxazoline

5u (155 mg, 9%), m.p. (MeOAc-hexane) 187-188 °C (Found:  $M^+ - PhC_3H_2NO$ , 272.1342.  $C_{26}H_{28}NO_2P$  requires  $M - C_{26}H_{28}NO_2P$ PhC<sub>3</sub>H<sub>2</sub>ON, 272.1330);  $R_{\rm F}$  (EtOAc) 0.55;  $v_{\rm max}/{\rm cm}^{-1}$  2970–2800 (CH), 1670 (C=N), 1580 (Ph), 1365 (P-Ph), 1175 (P=O) and 1110  $(C-O); \delta_{H}(CDCl_{3}) 0.68 (3 H, d, J 6.3, CMe_{A}Me_{B}), 0.82 (3 H, d, J 6.3)$ 6.2, CMe<sub>A</sub>Me<sub>B</sub>), 1.40–1.74 (3 H, m, CH<sub>2</sub>CHMe<sub>2</sub>), 2.78 (1 H, m, PCH), 3.22 (1 H, dd, J10.7 and 17.0, 4-H<sub>A</sub>H<sub>B</sub>), 3.60 (1 H, dd, J9.1 and 17.0, 4-H<sub>A</sub>H<sub>B</sub>), 4.96 (1 H, m, OCH), 7.29-7.54 (10 H, m, Ph<sub>2</sub>PO and PhCN) and 7.88-7.76 (5 H, m, Ph<sub>2</sub>PO and PhCN);  $\delta_{\rm C}({\rm CDCl}_3)$  21.5 (Me), 23.2 (Me), 28.8 (d, J 9, CHMe<sub>2</sub>), 35.7 (CH<sub>2</sub>), 39.1 (d, J4, CH<sub>2</sub>), 41.1 (d, J61, PCH), 81.2 (OC), 126.7, 127.4, 128.3, 128.5, 128.6, 128.6, 128.6, 128.7, 129.4 (NC-C<sub>arvl</sub>), 130.0, 131.1, 131.2, 131.3, 131.8, 131.8, 131.9, 132.6 (d, J71, ipso-C) and 157.3 (C=N); m/z 272 [Ph<sub>2</sub>P(O)C<sub>5</sub>H<sub>11</sub>, 26%], 230 [Ph<sub>2</sub>P(O)Et, 15], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 100], 201 (Ph<sub>2</sub>PO, 13) and 77 (Ph, 9).

By method A. Aqueous NaOCI (2 mol dm<sup>-3</sup>; 1.5 cm<sup>3</sup>, 3 mmol) was added to a stirred solution of the phosphine oxide 2e (272 mg, 0.91 mmol) and benzaldehyde oxime (0.17 cm<sup>3</sup>) in CH<sub>2</sub>Cl<sub>2</sub> (10 cm<sup>3</sup>), and the mixture stirred for 19 d, with more oxime and bleach added after 5, 11 and 15 d. Work-up gave a residue which was purified by column chromatography on SiO<sub>2</sub>, eluting with 25% hexane in EtOAc to give the anti-4,5-dihydroisoxazole 4u (160 mg, 42%) and a mixture of the phosphine oxide 2e and the syn-4,5-dihydroisoxazole 5u (117 mg).

Method for Reduction of 4,5-Dihydroisoxazoles.—NaBH<sub>4</sub> (5 equiv.) was added **portionwise** to a stirred solution of the 4,5dihydroisoxazole 4 or 5 (1 equiv.) and NiCl<sub>2</sub>-6H<sub>2</sub>O (2 equiv.) in MeOH (30 cm<sup>3</sup> per mmol of the 4,5-dihydroisoxazole) at -30 °C under N<sub>2</sub> or Ar, and the mixture stirred for 5–10 min. The MeOH was removed under reduced pressure (CARE—it often bumps) and conc. aqueous NH<sub>3</sub> (d 0.88, 30 cm<sup>3</sup> per mmol of 4,5-dihydroisoxazole) and CH<sub>2</sub>Cl<sub>2</sub> (an equal volume) were added to the residue; the mixture was then stirred exposed to the air until the organic layer was a pale yellow–brown. The mixture was separated and the aqueous layer extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × the same volume as before). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>) and evaporated under reduced pressure to give the crude reaction product.

(2R\*,4R\*)- and (2R\*,4S\*)-4-Amino-1-diphenylphosphinoylheptan-2-ol (6 or 7a).—By the above method,  $NaBH_4$  (0.574 g, 15.2 mmol), 5-diphenylphosphinoylmethyl-3-propyl-4,5-dihydroisoxazole 4 or 5b (1.000 g, 3.06 mmol) and NiCl<sub>2</sub>·6H<sub>2</sub>O (1.50 g, 6.31 mmol) gave a yellow oil which was purified by column chromatography on SiO<sub>2</sub>, eluting with CH<sub>2</sub>Cl<sub>2</sub>-MeOH-NH<sub>3</sub> (100:10:2) to give a 60:40 mixture of two diastereoisomers A and B of the amino alcohols 6 or 7a (0.916 g, 90.5%) as a yellow oil (Found: M<sup>+</sup>, 331.1688. C<sub>19</sub>H<sub>26</sub>NO<sub>2</sub>P requires M, 331.1701);  $R_{\rm F}$  (CH<sub>2</sub>Cl<sub>2</sub>-MeOH-NH<sub>3</sub>, 100:10:2) 0.40;  $v_{max}/cm^{-1}$  (thin film) 3500–3100 (OH), 3060 (NH<sub>2</sub>), 3000– 2800 (CH), 1600, 1590 and 1500 (Ph), 1465, 1438 (P-Ph), 1176 (P=O), 745, 718 and 699 (Ph);  $\delta_{\rm H}$ (CDCl<sub>3</sub>, 400 MHz) 0.87 (3 H A and **B**, t, J 3.2, Me), 1.18–1.38 (4 HA and 5 HB, m, CH<sub>2</sub>CH<sub>2</sub>A and **B** and  $3-H_AH_BB$ , 1.54 (1 HB, ddd, J 3, 8 and 14,  $3-H_AH_B$ ), 1.72 (1 HA, ddd, J3, 8 and 14, 3-H<sub>A</sub>H<sub>B</sub>), 1.87 (1 HA, td, J4.5 and 14, 3-H<sub>A</sub>H<sub>B</sub>), 2.34–2.49 (1 HA and B, m, NCH), 2.56–2.66 (1 HA and **B**, m, PCH<sub>A</sub>H<sub>B</sub>, 2.78 (1 HA, m, PCH<sub>A</sub>H<sub>B</sub>), 3.09 (1 HB, m, PCH<sub>A</sub>H<sub>B</sub>), 4.22–4.36 (1 HA and B, m, OCH), 7.42–7.54 (6 HA and **B**, m,  $Ph_2PO$ ) and 7.72–7.82 (4 HA and **B**, m, Ph<sub>2</sub>PO); δ<sub>C</sub>(CDCl<sub>3</sub>) 13.9 (Me), 14.0 (Me), 18.7 (CH<sub>2</sub>Me), 19.1 (CH<sub>2</sub>Me), 37.3 (d, J 70, PCH<sub>2</sub>), 38.1 (d, J 70, PCH<sub>2</sub>), 39.8 (CH<sub>2</sub>), 42.4 (CH<sub>2</sub>), 43.5 (d, J 9, CH<sub>2</sub>), 43.9 (d, J 7, CH<sub>2</sub>), 48.0 (NCH), 52.0 (NCH), 64.6 (OCH), 67.9 (OCH), 128.5, 128.6, 128.7, 128.7, 128.8, 130.5, 130.6, 130.7, 130.8, 130.8, 130.9, 131.7, 131.8, 133.0 (d, J 98, ipso-C) and 133.8 (d, J 98, *ipso-C*); m/z 331 (M<sup>+</sup>, 0.6%), 313 M<sup>+</sup> - H<sub>2</sub>O, 3), 288 (M<sup>+</sup>

- Pr, 1.6), 270 [Ph<sub>2</sub>P(O)C<sub>4</sub>H<sub>5</sub>O, 58], 243 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>2</sub>O, 23], 216 [Ph<sub>2</sub>P(O)Me, 28], 215 [Ph<sub>2</sub>P(O)CH<sub>2</sub>, 47], 202 (Ph<sub>2</sub>POH, 61), 201 (Ph<sub>2</sub>PO, 100), 130 (M<sup>+</sup> - Ph<sub>2</sub>PO, 12) and 77 (Ph, 25).

(2R\*,4R\*)- and (2R\*,4S\*)-4-Amino-1-diphenylphosphinoyl-4-phenylbutan-2-ol (6 or 7b).-By the above method, NaBH<sub>4</sub> (68 mg, 1.8 mmol), 5-diphenylphosphinoylmethyl-3-phenyl-4,5dihydroisoxazole 4 or 5e (130 mg, 0.36 mmol) and NiCl<sub>2</sub>·6H<sub>2</sub>O (170 mg, 0.72 mmol) gave a yellow oil which was purified by column chromatography on SiO<sub>2</sub>, eluting with CH<sub>2</sub>Cl<sub>2</sub>-MeOH-NH<sub>3</sub> (125:10:2). The first product eluted was the major amino alcohol 6 or 7b (18 mg, 14%) as a yellow oil (Found:  $M^+$ , 365.1545.  $C_{22}H_{24}NO_2P$  requires *M*, 365.1545);  $R_F$  $(CH_2Cl_2-MeOH-NH_3, 100:10:2) 0.28; v_{max}/cm^{-1}$  (thin film) 3400-3200 (OH and NH<sub>2</sub>), 3078-3026 (aryl CH), 2935- 2908 (CH), 1600, 1591 and 1492 (Ph), 1453, 1437 (P-Ph), 1180 (P=O) and 744, 718 and 698 (Ph);  $\delta_{\rm H}({\rm CDCl}_3)$  1.83–2.04 (2 H, 2nd order m, NCCH<sub>2</sub>), 2.37-2.62 (2 H, 2nd order m, PCH<sub>2</sub>), 2.4-3.0 (3 H, br s, OH and NH<sub>2</sub>), 4.23 (1 H, d quintet, J 4 and 8, OCH), 4.32 (1 H, dd, J 4 and 8, NCH) and 7.20–7.80 (15 H, m, Ph<sub>2</sub>PO and PhCN); m/z 365 (M<sup>+</sup>, 5%), 347 (M<sup>+</sup> – H<sub>2</sub>O, 12), 330 (M<sup>+</sup> – H<sub>2</sub>O – NH<sub>3</sub>, 15), 260 (M<sup>+</sup> – PhCH<sub>2</sub>N, 40), 245 [Ph<sub>2</sub>P(O)C<sub>2</sub>-H<sub>4</sub>O, 25], 216 [Ph<sub>2</sub>P(O)Me, 67], 215 [Ph<sub>2</sub>P(O)CH<sub>2</sub>, 100], 202 (Ph<sub>2</sub>POH, 70), 201 (Ph<sub>2</sub>PO, 98), 106 (PhCH<sub>3</sub>N, 58) and 77 (Ph, 41). The second fraction eluted contained a mixture of diastereoisomers, predominantly the major, of the amino alcohols 6 or 7b (15 mg, 11%). The third fraction eluted contained a 5:2 mixture of the two diastereoisomeric amino alcohols 6 or 7bA (as above) and B (67 mg, 51%) as plates, m.p. 55-57°C (Found: M<sup>+</sup>, 365.1536. C<sub>22</sub>H<sub>24</sub>NO<sub>2</sub>P requires M, 365.1545);  $R_{\rm F}$  (CH<sub>2</sub>Cl<sub>2</sub>-MeOH-NH<sub>3</sub>, 100:10:2) 0.28 and 0.22; v<sub>max</sub>/cm<sup>-1</sup>(Nujol mull) 3300–3200 (OH and NH<sub>2</sub>), 3077–3027 (aryl CH), 2950-2840 (CH), 1600, 1590 and 1490 (Ph), 1453, 1435 (P–Ph), 1178 (P=O) and 744, 718 and 698 (Ph);  $\delta_{\rm H}$ (CDCl<sub>3</sub>, 400 MHz) 1.84-2.04 (2 HA and B, m, NCCH<sub>2</sub>), 2.33-2.66 (2HA and B, m, PCH<sub>2</sub>), 4.02 (1 HB, dd, 4 and 9.5, NCH), 4.20-4.34 (2 HA and 1 HB, m, OCHA and B and NCHA), 720-7.30 (5 HA and B, m, Ph<sub>2</sub>PO and PhCN), 7.40-7.58 (6 HA and B, m, Ph<sub>2</sub>PO and PhCN) and 7.60-7.80 (4 HA and B, m, Ph<sub>2</sub>PO and PhCN); δ<sub>c</sub>(CDCl<sub>3</sub>) 37.0 (d, J 70, CH<sub>2</sub>), 37.9 (d, J 70, CH<sub>2</sub>), 46.3 (d, J 54, CH<sub>2</sub>), 46.4 (d, J 55, CH<sub>2</sub>), 52.4 (NCH), 55.8 (NCH), 64.4 (OCH), 67.3 (OCH), 125.8, 126.0, 126.9, 127.1, 128.5, 128.6, 128.6, 128.7, 128.8, 130.5, 130.6, 130.7, 130.7, 130.8, 130.8, 130.8, 131.7, 131.9, 133.1 (d, J 99, PC<sub>aryl</sub>), 133.4 (d, J 98,  $PC_{aryl}$ , 145.6 (NC- $C_{aryl}$ ) and 146.1 (NC- $C_{aryl}$ ); m/z 365 (M<sup>+</sup>, 11%), 347 ( $M^+ - H_2O$ , 5.3), 260 [ $Ph_2P(O)C_3H_7O$ , 31], 245  $[Ph_2P(O)C_2H_4O,$ 21], 216  $[Ph_2P(O)Me,$ 61], 215 [Ph<sub>2</sub>P(O)CH<sub>2</sub>, 100], 202 (Ph<sub>2</sub>POH, 79), 201 (Ph<sub>2</sub>PO, 95), 164  $(M^+ - Ph_2PO, 8.0)$ , 146  $(M^+ - Ph_2PO - H_2O, 36)$ , 106 (PhCH<sub>3</sub>N, 56) and 77 (Ph, 40).

(2R\*,3R\*,5R\*)- and (2R\*,3R\*,5S\*)-5-Amino-2-diphenylphosphinoyloctan-3-ols 6c.—By the above method, NaBH<sub>4</sub> (100 mg, 2.5 mmol), anti-5-(1-diphenylphosphinoylethyl)-3propyl-4,5-dihydroisoxazole 4h (100 mg, 0.29 mmol) and NiCl<sub>2</sub>·6H<sub>2</sub>O (280 mg, 1.2 mmol) gave a yellow oil which was purified by column chromatography on SiO<sub>2</sub>, eluting with (CH<sub>2</sub>Cl<sub>2</sub>-MeOH-NH<sub>3</sub>, 100:10:2) to give a mixture of amino alcohols 6c A and B in a 55:45 ratio (85 mg, 84%) as a yellow oil (Found: M<sup>+</sup>, 345.1855. C<sub>20</sub>H<sub>28</sub>NO<sub>2</sub>P requires M, 345.1858); R<sub>F</sub>  $(CH_2Cl_2-MeOH-NH_3, 100:10:2) 0.28; v_{max}/cm^{-1}$  (thin film) 3500-3200 (NH<sub>2</sub> and OH), 3093-3010 (aryl C-H), 2956-2872 (C-H), 1591 and 1500 (Ph), 1458, 1438 (P-Ph), 1175 (P=O) and 737, 720 and 698 (Ph);  $\delta_{\rm H}$  (CDCl<sub>3</sub>, 400 MHz) 0.80 (3 HB, t, J7, CH<sub>2</sub>Me), 0.89 (3 HA, t, J7, CH<sub>2</sub>Me), 1.15 (3 HA, dd, J7 and 17, PCMe), 1.19 (3 HB, dd, 7.5 and 16.5, PCMe), 1.18-1.46 (4 HA and 5 HB, m, CH<sub>2</sub>CH<sub>2</sub>A and B and 4-H<sub>A</sub>H<sub>B</sub>B), 1.65 (1 HA, ddd,

J 3, 10 and 14.5, 4- $H_AH_B$ ), 1.75 (1 HA, ddd, J 2.5, 6 and 15, 4- $H_AH_B$ ), 2.05 (1 HB, br d, J 15, 4- $H_AH_B$ ), 2.62–2.76 (2 HB and 1 HA, m, PCHA and B and NCHB), 3.19 (1 HA, m, NCH), 4.11 (1 HB, m, OCH), 4.19 (1 HA, m, OCH), 7.42–7.52 (6 HA and B, Ph<sub>2</sub>PO) and 7.76–7.88 (4 HA and B, m, Ph<sub>2</sub>PO);  $\delta_C$ (CDCl<sub>3</sub>) 7.0 (Me), 83.3 (Me), 13.9 (Me), 14.0 (Me), 18.7 (MeCH<sub>2</sub>), 19.3 (MeCH<sub>2</sub>), 37.5 (d, J 3, CH<sub>2</sub>), 38.0 (CH<sub>2</sub>), 38.2 (CH<sub>2</sub>), 38.2 (d, J 70, PCH), 38.3 (d, J 70, PCH), 42.9 (CH<sub>2</sub>), 48.5 (NCH), 52.6 (NCH), 67.9 (OCH), 71.6 (d, J 4, OCH), 128.5, 128.6, 128.7, 130.7, 130.8, 130.9, 131.0, 131.1, 131.4, 131.5, 131.6, 132.2 (d, J 96, *ipso*-C), 132.5, (d, J 94, *ipso*-C), 132.2 (d, J 98, *ipso*-C) and 132.3 (*ipso*-C); m/z 345 (M<sup>+</sup>, 2.5%), 284 [Ph<sub>2</sub>P(O)C<sub>5</sub>H<sub>7</sub>O, 56], 274 [Ph<sub>2</sub>P(O)C<sub>4</sub>H<sub>9</sub>O, 2.7], 259 [Ph<sub>2</sub>P(O)C<sub>3</sub>H<sub>6</sub>O, 16], 230 [Ph<sub>2</sub>P(O)Et, 40], 202 (Ph<sub>2</sub>POH, 68), 201 (Ph<sub>2</sub>PO, 100), 144 (M<sup>+</sup> - Ph<sub>2</sub>PO, 11) and 77 (Ph, 30).

(2R\*,3S\*,5R\*)- and (2R\*,3S\*,5S\*)-5-Amino-2-diphenylphosphinoyloctan-3-ols 7c.—By the above method, NaBH<sub>4</sub> (135 mg, 3.6 mmol), syn-5-(1-diphenylphosphinoylethyl)-3-propyl-4,5-dihydroisoxazole 5h (244 mg, 0.72 mmol) and NiCl<sub>2</sub>-6H<sub>2</sub>O (333 mg, 1.4 mmol) gave a mixture of the amino alcohols 7c A and B in a 66:34 ratio (212 mg, 86%) as a brown oil. This mixture was identified by its <sup>1</sup>H NMR spectrum:  $\delta_{\rm H}$ (CDCl<sub>3</sub>) 0.84 (3 HA, t, J 6.3, CH<sub>2</sub>Me), 0.95 (3 HB, t, J 7.4, CH<sub>2</sub>Me), 1.18 (3 HA, dd, J 7.2 and 16.9, CHMe), 1.23–1.54 (5 HA and 8 HB, m, CH<sub>2</sub>s and CHMeB), 1.65 (1 HA, sextet, J 7.4, MeCH<sub>A</sub>H<sub>B</sub>), 1.79 (1 HB, m), 2.19 (1 HA, br t, J 7.4, NCH), 2.40 (1 HA, m, PCH), 2.77 (1 HB, br s, NCH or PCH), 2.94 (1 HB, br s, PCH or NCH), 4.20–4.30 (1 HA and B, m, OCH), 7.40–7.55 (6 H, m, Ph<sub>2</sub>PO) and 7.71–7.89 (4 H, m, Ph<sub>2</sub>PO).

(1R\*,3R\*,4R\*)- and (1S\*,3R\*,4R\*)-1-Amino-4-diphenylphosphinoyl-1-phenylpentan-3-ols 6d.-By the above method, NaBH<sub>4</sub> (250 mg, 6.67 mmol), anti-5-(1-diphenylphosphinoylethyl)-3-phenyl-4,5-dihydroisoxazole 4k (500 mg, 1.33 mmol) and NiCl<sub>2</sub>·6H<sub>2</sub>O (634 mg, 2.67 mmol) gave a yellow oil (425 mg, 85%; isomer ratio 82:18 by NMR) which was purified by column chromatography on SiO<sub>2</sub>, eluting with CH<sub>2</sub>Cl<sub>2</sub>-MeOH-NH<sub>3</sub> (150:10:2). The first compound isolated was the major amino alcohol 6d (316 mg, 63%) as needles, m.p. 185-188 °C (Found: C, 72.4; H, 6.95; N, 3.5. C<sub>23</sub>H<sub>26</sub>NO<sub>2</sub>P requires C, 72.8; H, 6.9; N, 3.7);  $R_F$  (CH<sub>2</sub>Cl<sub>2</sub>-MeOH-NH<sub>3</sub>, 100:10:2) 0.42; v<sub>max</sub>/cm<sup>-1</sup> (Nujol mull) 3359 (NH<sub>2</sub>), 3304 (OH), 3075–2854 (CH), 1600 and 1580 (Ph), 1438 (P-Ph), 1176 (P=O) and 740 and 720 (Ph);  $\delta_{\rm H}$  (CDCl<sub>3</sub>, 400 MHz) 1.12 (3 H, dd, J 7.6 and 17, Me), 1.90 (1 H, ddd, J 3.5, 10 and 14.5, 2-H<sub>A</sub>H<sub>B</sub>), 2.10 (1 H, ddd, J 2.5, 7 and 14.5, 2-H<sub>A</sub>H<sub>B</sub>), 2.62 (1 H, m, PCH), 4.00 (1 H, m incl. J 2.5 and 10, OCH), 4.47 (1 H, dd, J 3.5 and 7, NCH), 7.16-7.62 (13 H, m, Ph<sub>2</sub>PO and NCPh) and 7.70-7.80 (2 H, m, Ph<sub>2</sub>PO and NCPh);  $\delta_{C}(CDCl_{3})$  9.0 (Me), 38.4 (d, J 70, PCH), 41.2 (d, J 4, CH<sub>2</sub>), 52.9 (NCH), 68.0 (OCH), 126.0, 126.9, 128.4, 128.5, 128.6, 130.7, 130.7, 131.3, 131.4, 131.6, 132.1 (d, J 97 ipso-C) and 144.3  $(NC-C_{aryl}); m/z 403 (M^+ + Na + H, 6.9\%), 381 (M^+ + H,$ 29), 259 [Ph<sub>2</sub>P(O)C<sub>3</sub>H<sub>6</sub>O, 29], 230 [Ph<sub>2</sub>P(O)Et, 15] and 201 (Ph<sub>2</sub>PO, 100). The second compound isolated was the minor amino alcohol 6d (73 mg, 14%) as needles, m.p. 128-132 °C (Found: C, 72.8; H, 7.0; N, 3.7. C<sub>23</sub>H<sub>26</sub>NO<sub>2</sub>P requires C, 72.8; H, 6.9; N, 3.7%); R<sub>F</sub> (CH<sub>2</sub>Cl<sub>2</sub>-MeOH-NH<sub>3</sub>, 100:10:2) 0.34;  $v_{max}/cm^{-1}$  3333 and 3274 (NH<sub>2</sub>), 3185–3023 (OH), 2954–2854 (C-H), 1600 and 1580 and 1500 (Ph), 1457, 1437 (P-Ph), 1182 (P=O) and 765, 740, 720 and 697 (Ph);  $\delta_{\rm H}$ (CDCl<sub>3</sub>, 400 MHz), 1.17 (3 H, dd, J7.5 and 16.5, Me), 1.78 (1 H, td, J 10.5 and 14.5,  $2H_{A}H_{B}$ ), 2.22 (1 H, ddd, J 2, 3.5, and 14.5, 2-H<sub>A</sub>H<sub>B</sub>), 2.75 (1 H, dqd, J4, 7.5 and 9, PCH), 3.88 (1 H, dd, J 3.5 and 10.5, NCH), 4.22 (1 H, m, OCH), 7.18-7.55 (11 H, m, Ph<sub>2</sub>PO and NCPh), and 7.70–7.88 (4 H, m, Ph<sub>2</sub>PO and NCPh); δ<sub>C</sub>(CDCl<sub>3</sub>) 7.8 (Me), 38.4 (d, J71, PCH), 40.0 (CH<sub>2</sub>), 56.5 (NCH), 71.5 (OCH), 125.6, 127.1, 128.7, 130.6, 130.8, 130.9, 131.0, 131.4, 131.6, 132.4

(d, J 96, *ipso*-C), 132.7 (d, J 95, *ipso*-C) and 146.2 (NC- $C_{aryl}$ ); m/z 403 (M<sup>+</sup> + Na + H, 5.8%), 381 (M<sup>+</sup> + H, 34), 259 [Ph<sub>2</sub>P(O)C<sub>3</sub>H<sub>6</sub>O, 29], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 11.7] and 201 (Ph<sub>2</sub>PO, 100).

NOE Difference Experiments on anti,anti- and anti,syn-1-Amino-4-diphenylphosphinoyl-1-phenylpentan-3-ol 6d.—Major isomer. Irradiation at  $\delta$  4.5 (NCH) gave enhancements at 7.8– 7.1 (unassigned aromatic protons, negative NOEs), 2.6 (PCH, negative NOE), 2.1 (4-H<sub>A</sub>H<sub>B</sub>, very small enhancement), 1.9 (4-H<sub>A</sub>H<sub>B</sub>), and 1.1 (Me, negative NOE). Irradiation at  $\delta$  4.0 (OCH) gave enhancements at 7.8–7.1 (unassigned aromatic protons, negative NOEs), 2.6 (PCH), 2.1 (4-H<sub>A</sub>H<sub>B</sub>), 1.9 (4-H<sub>A</sub>H<sub>B</sub>, very small NOE) and 1.1 (Me).

*Minor isomer.* Irradiation at  $\delta$  4.2 (OCH) gave enhancements at  $\delta$  7.8 (unassigned aromatic protons), 7.8–7.2 (unassigned aromatic protons, negative NOE), 7.2–70 (unassigned aromatic protons), 3.9 (NCH), 2.7 (PCH), 2.2 (4- $H_AH_B$ ), 1.9 (4- $H_AH_B$ ) and 1.2 (Me, small negative NOE).

(1R\*,3S\*,4R\*)- and (1S\*,3S\*,4R\*)-1-Amino-4-diphenylphosphinoyl-1-phenylpentan-3-ols 7d.—By the above method, NaBH<sub>4</sub> (950 mg, 25 mmol), syn-5-(1-diphenylphosphinoylethyl)-3-phenyl-4,5-dihydroisoxazole 5k (1.002 g, 2.7 mmol) and NiCl<sub>2</sub>·6H<sub>2</sub>O (2.38 g, 10 mmol) gave a yellow oil which was purified by column chromatography on  $SiO_2$ , eluting with  $CH_2Cl_2$ -MeOH-NH<sub>3</sub> (100:10:2). The first compound isolated was the major amino alcohol 7d (319 mg, 31.5%) as needles, m.p. 162-164 °C (Found: C, 72.6; H, 7.1; N, 3.4%; M<sup>+</sup>, 379.1693. C<sub>23</sub>H<sub>26</sub>NO<sub>2</sub>P requires C,72.8; H, 6.9; N, 3.7%; *M*, 379.1701);  $R_{\rm F}$  (CH<sub>2</sub>Cl<sub>2</sub>-MeOH-NH<sub>3</sub>, 100:10:2) 0.49;  $\nu_{\rm max}/{\rm cm}^{-1}$  (Nujol mull) 3345 and 3264 (NH<sub>2</sub>), 3148 (OH), 3083-3031 (aryl CH), 2950-2800 (C-H), 1600, 1590 and 1490 (Ph), 1455, 1434 (P-Ph), 1192 (P=O) and 765, 727 and 702 (Ph);  $\delta_{\rm H}$ (CDCl<sub>3</sub>, 400 MHz) 1.19 (3 H, dd, J7 and 17, Me), 1.63 (1 H, ddd, J4, 8.5, and 13.5, 2H<sub>A</sub>H<sub>B</sub>), 2.07 (1 H, ddd, J 5, 9.5 and 14, 2-H<sub>A</sub>H<sub>B</sub>), 2.36 (1 H, d quintet, J 1 and 7, PCH), 1.5-2.8 (OH and NH<sub>2</sub>), 4.15 (1 H, dd, J 4.5 and 9, NCH), 4.27 (1 H, ddt, J 1, 4 and 10, OCH), 7.20-7.30 (5 H, m, Ph<sub>2</sub>PO and NCPh), 7.40-7.54 (6 H, m, Ph<sub>2</sub>PO and NCPh) and 7.67–7.80 (4 H, m, Ph<sub>2</sub>PO and NCPh);  $\delta_{\rm C}$ (CDCl<sub>3</sub>) 6.2 (Me), 36.2 (d, J 70, PCH), 43.7 (d, J 12, CH<sub>2</sub>), 52.4 (NCH), 66.2 (OCH), 126.1, 127.0, 128.6, 128.6, 128.8, 128.8, 129.0, 130.7, 130.8, 130.8, 130.8, 131.7 (d, J 100, ipso-C), 131.8 and 145.7 (NC- $C_{aryll}$ ); m/z 379 (M<sup>+</sup>, 5.5%), 361 (M<sup>+</sup> - H<sub>2</sub>O, 2.3), 274 (M<sup>+</sup> - PhCH<sub>2</sub>N, 24), 259 [Ph<sub>2</sub>P(O)C<sub>3</sub>H<sub>6</sub>O, 15], 230  $[Ph_2P(O)Et, 89], 229 [Ph_2P(O)C_2H_4, 43], 202 (Ph_2POH, 100), 201 (Ph_2PO, 81), 178 (M^+ - Ph_2PO, 13), 160 (M^+ - Ph_2PO$ Ph<sub>2</sub>PO - H<sub>2</sub>O, 39), 106 (PhCH<sub>3</sub>N, 55) and 77 (Ph, 32). The second fraction isolated was a mixture of the two diastereoisomeric amino alcohols 7d (540 mg, 53.3%), the major A (as above) and the minor **B**, in ca. 1:1 ratio, as needles, m.p. 129-136 °C (Found: C, 72.4; H, 6.95; N, 3.5%; M<sup>+</sup>, 379.1681. C<sub>23</sub>H<sub>26</sub>NO<sub>2</sub>P requires C, 72.8; H, 6.9; N, 3.7%; M, 379.1701);  $R_{\rm F}$  (CH<sub>2</sub>Cl-MeOH-NH<sub>3</sub>, 100:10:2) 0.49 and 0.47;  $v_{\rm max}/{\rm cm^{-1}}$ (Nujol mull) 3340 and 3266 (NH<sub>2</sub>), 3200-3100 (OH), 3070-2830 (CH), 1600, 1580 and 1500 (Ph), 1457, 1437 (P-Ph), 1186 (P=O) and 726, 718, 701 and 695 (Ph);  $\delta_{\rm H}$ (CDCl<sub>3</sub>, 400 MHz) 1.18 (3 HA, dd, J7 and 17, Me), 1.19 (3 HB, dd, J7 and 17, Me), 1.59-1.67 (1 HA and B, m, 2-H<sub>A</sub>H<sub>B</sub>), 2.00-2.11 (1 HA and B, m, 2-H<sub>A</sub>H<sub>B</sub>), 2.27 (1 HB, d quintet, J 1 and 7.5, PCH), 2.36 (1 HA, d quintet, J 1 and 7, PCH), 4.03 (1 HB, t, J 7, NCH), 4.12-4.20 (1 HA and B, m, NCHA and OCHB), 4.26 (1 HA, ddt, J1, 4 and 10, OCH), 7.19–7.30 (5 HA and B, m, Ph<sub>2</sub>PO and NCPh), 7.40– 7.54 (6 HA and B, m, Ph<sub>2</sub>PO and NCPh), and 7.69-7.78 (4 HA and **B**, m, Ph<sub>2</sub>PO and NCPh);  $\delta_{C}(CDCl_3) 6.3$  (AMe), 6.5 (BMe), 36.3 (A, d, J 70, PCH), 37.3 (B, d, J 70, PCH), 43.8 (B, d, J 12, CH<sub>2</sub>, superimposed on ACH<sub>2</sub>), 52.4 (A, NCH), 55.0 (BNCH), 66.2 (AOCH), 68.7 (BOCH), 126.2, 127.0, 127.1, 128.5, 128.5,

128.6, 128.7, 128.7, 128.9, 130.8, 130.9, 131.7, 131.7 and 131.9 (d, *ipso*-C), 145.7 (ANC- $C_{aryl}$ ) and 145.8 (BNC- $C_{aryl}$ ); *m/z* 380 (M<sup>+</sup> + H, 5.6%), 379 (M<sup>+</sup>, 3.7), 361 (M<sup>+</sup> - H<sub>2</sub>O, 2), 284 (M<sup>+</sup> - H<sub>2</sub>O - Ph, 2.5), 274 (M<sup>+</sup> - PhC<sub>2</sub>H<sub>4</sub>, 31), 259 (M<sup>+</sup> - PhNEt, 15), 230 [Ph<sub>2</sub>P(O)Et, 79], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 44), 202 (Ph<sub>2</sub>POH, 100), 201 (Ph<sub>2</sub>PO, 96), 178 (M<sup>+</sup> - Ph<sub>2</sub>PO, 12), 160 (M<sup>+</sup> - Ph<sub>2</sub>PO - H<sub>2</sub>O, 33), 106 (PhCH<sub>3</sub>N, 63) and 77 (Ph, 48).

(1R\*,3R\*,4R\*)- and (1S\*,3R\*,4R\*)-1-Amino-4-diphenylphosphinoyl-1-phenylheptan-3-ols 6e.—By the above method, NaBH<sub>4</sub> (35 mg, 0.5 mmol), anti-3-(1'-diphenylphosphinoylbutyl)-3-phenyl-4,5-dihydroisoxazole 4r (75 mg, 0.19 mmol) and NiCl<sub>2</sub>·6H<sub>2</sub>O (90 mg, 0.4 mmol) gave a yellow oil which slowly crystallised and was shown by <sup>1</sup>H NMR to be a 5:1 mixture of two isomers A and B, respectively, of the amino alcohol 6e (71 mg, 94%), m.p. 60-63 °C (Found: M<sup>+</sup>, 407.2013. C<sub>25</sub>H<sub>30</sub>NO<sub>2</sub>P requires *M*, 407.2014); *R*<sub>F</sub> (CH<sub>2</sub>Cl<sub>2</sub>-MeOH-NH<sub>3</sub>, 150:10:2) 0.35 and 0.29;  $\nu_{max}/cm^{-1}$  (CH<sub>2</sub>Cl<sub>2</sub>) 3680 and 3610 (NH<sub>2</sub>), 3500-3140 (OH), 3000-2800 (CH), 1600 (Ph), 1450 (P–Ph), 1175 (P=O) and 1120 (C–O);  $\delta_{\rm H}$ (CDCl<sub>3</sub>, 400 MHz) 0.72 (3 HA, t, J 7.2, Me), 0.73 (3 HB, t, J 7.0, Me), 1.09-1.15 (1 HA and **B**, m,  $CH_2CH_AH_B$ , 1.35–1.41 (1 HA and **B**, m,  $CH_2CH_AH_B$ , 1.52–1.60 (1 HA and B, m,  $CH_AH_BCH_2$ ), 1.69– 1.75 (1 HA and B, m, CH<sub>A</sub>H<sub>B</sub>CH<sub>2</sub>), 1.95 (2 HA, m, J 5.3, 2-H<sub>2</sub>), 2.1 (2 HB, br d, J ca. 13, 2-H<sub>2</sub>), 2.46 (1 HA, m, PCH), 2.58 (1 HB, m, PCH), 3.8 (1 HB, dd, J ca. 9.5 and 13, NCH), 4.05 (1 HA, sextet, J 5.4, OCH), 4.18 (1 HB, br t, J ca. 9.5, OCH), 4.36 (1 HA, t, J 5.2, NCH), 7.13-7.24 (5 HA and B, m, Ph<sub>2</sub>PO and PhCN), 7.27-7.33 (2 HA and B, m, Ph<sub>2</sub>PO and PhCN), 7.34-7.51 (7 HA and **B**, m, Ph<sub>2</sub>PO and PhCN), 7.59-7.66 (2 HA and **B**, m, Ph<sub>2</sub>PO and PhCN) and 7.72-7.88 (3 HA and B, m, Ph<sub>2</sub>PO and PhCN);  $\delta_{\rm C}$ (CDCl<sub>3</sub>) 13.9 (MeB), 14.2 (MeA), 22.4 (d, J9, CH<sub>2</sub>A), 22.7 (d, J 15, CH<sub>2</sub>B), 26.4 (CH<sub>2</sub>B), 27.1 (CH<sub>2</sub>A), 41.0 (CH<sub>2</sub>B), 42.0 (CH<sub>2</sub>A), 43.4 (d, J 68, PCHA), 43.7 (d J 42, PCHB), 53.0 (NCHA), 56.5 (NCHB), 68.2 (OCHA), 71.9 (OCHB), 125.7, 126.0, 126.9, 127.2 (4°), 128.0, 128.4, 128.5, 128.7, 130.5, 130.6, 130.8, 130.8, 130.9, 131.0, 131.3, 131.5, 132.8 (d, J94, ipso C) and 133.1 (d, J 94, ipso C); m/z 408 (M<sup>+</sup>, 3.5%), 302 (M<sup>+</sup> -PhCH<sub>2</sub>N, 17), 287 [Ph<sub>2</sub>P(O)C<sub>5</sub>H<sub>10</sub>O, 13], 258 [Ph<sub>2</sub>P(O)Bu, 19], 243  $[Ph_2P(O)C_3H_6, 7]$ , 229  $[Ph_2P(O)C_2H_4, 78]$ , 202 (Ph<sub>2</sub>POH, 100), 201 (Ph<sub>2</sub>PO, 63), 106 (PhCH<sub>3</sub>N, 72) and 77 (Ph, 24).

(1R\*,3R\*,4R\*)- and (1S\*,3R\*,4R\*)-1-Amino-4-diphenylphosphinoyl-6-methyl-1-phenylheptan-3-ols 6f.-By the above method, NaBH<sub>4</sub> (189 mg, 5 mmol), anti-5-(1'-diphenylphosphinoyl-3'-methylbutyl)-3-phenyl-4,5-dihydroisoxazole 4u (390 mg, 0.93 mmol) and NiCl<sub>2</sub>•6H<sub>2</sub>O (475 mg, 2 mmol) gave a 3:1 ratio of the two amino alcohols 6f, which was purified by column chromatography on SiO<sub>2</sub>, eluting with CH<sub>2</sub>Cl<sub>2</sub>-MeOH-NH<sub>3</sub> (200:10:2). The first fraction isolated was a 1:1 mixture of isomers A and B (161 mg, 41%) as a yellow amorphous solid, m.p. 180–186°C (Found:  $M^+ - C_7 H_7 N_1$ ) 316.1579.  $C_{26}H_{32}NO_2P$  requires M –  $C_7H_7N$ , 316.1592);  $R_F$  $(CH_2Cl_2-MeOH-NH_3, 150:10:2) 0.32 \text{ and } 0.27; v_{max}/cm^{-1}$ (CH<sub>2</sub>Cl<sub>2</sub>) 3680 and 3600 (NH<sub>2</sub>), 3500-3130 (OH), 3000-2800 (CH), 1600 (Ph), 1470-1420 (P-Ph), 1185-1160 (P=O) and 1115 (C-O); δ<sub>H</sub>(CDCl<sub>3</sub>) 0.69 (3 H**B**, d, J 6.2, CMe<sub>A</sub>Me<sub>B</sub>), 0.71 (3 HA,  $d, J6.1, CMe_AMe_B), 0.77 (3 HB, d, J6.5, CMe_AMe_B), 0.78 (3 HA, Me_B))$ d, J 6.4, CMe<sub>A</sub> $Me_B$ ), 1.24–1.45 (1 HA and **B**, m, PCC $H_AH_B$ ), 1.48-1.64 (1 HA and B, m, Me<sub>2</sub>CH), 1.66-1.88 (2 HA and 1HB, m, PCCH<sub>A</sub> $H_BA$  and **B**, and 2- $H_AH_BA$ ), 1.93–1.98 (2 HB, m, 2-H<sub>A</sub>H<sub>B</sub>), 2.10 (1 HA, ddd, J 1.9, 3.4 and 12.3, 2-H<sub>A</sub>H<sub>B</sub>), 2.49-2.59 (1 HB, m, PCH), 2.61-2.71 (1 HA, m, PCH), 2.4-3.0 (very br, OH and NH<sub>2</sub>), 3.81 (1 HA, dd, J 3.5 and 10.2, NCH), 4.04 (1 HB, m, OCH), 4.19 (1 HA, tt, J2.2 and 9.0, OCH), 4.35 (1 HB, t, J 5.2, NCH), 7.12-7.53 (11 HA and B, m, Ph<sub>2</sub>PO and PhCN), 7.54-7.66 (1 HA and B, m, Ph<sub>2</sub>PO and PhCN) and 7.70-7.89 (3

HA and **B**, m, Ph<sub>2</sub>PO and PhCN); m/z 316 (M<sup>+</sup> – PhCH<sub>2</sub>N, 2%), 301 ( $M^+$  – PhEtN, 9), 260 [Ph<sub>2</sub>P(O)C<sub>3</sub>H<sub>7</sub>O, 22], 245 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>O, 12], 243 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>2</sub>O, 11], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 82], 202 (Ph<sub>2</sub>POH, 100), 201 (Ph<sub>2</sub>PO, 57), 106 (PhCH<sub>3</sub>N, 55) and 77 (Ph, 13). The second fraction isolated contained the isomer **B** of the 4,5-dihydroisoxazole 6f, contaminated by a little of isomer A (90 mg, 23%), as a yellow oil (Found:  $M^+ - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_{32} NO_2 P$  requires  $M - C_7 H_7 N$ , 316.1580.  $C_{26} H_7 N$ , C<sub>7</sub>H<sub>7</sub>N, 316.1592); *R*<sub>F</sub>(CH<sub>2</sub>Cl<sub>2</sub>-MeOH-NH<sub>3</sub>, 150:10:2) 0.27; vmax/cm<sup>-1</sup> (CH<sub>2</sub>Cl<sub>2</sub>) 3680 and 3600 (NH<sub>2</sub>), 3500-3130 (OH), 3000-2800 (CH), 1600 (Ph), 1470-1420 (P-Ph), 1185-1160 (P=O) and 1115 (C-O);  $\delta_{\rm H}$ (CDCl<sub>3</sub>) 0.69 (3 H, d, J 6.2, CMe<sub>A</sub>Me<sub>B</sub>), 0.77 (3 H, d, J 6.5, CMe<sub>A</sub>Me<sub>B</sub>), 1.24–1.41 (1 H, m, PCCH<sub>A</sub>H<sub>B</sub>), 1.55(1 H, nonet, J 6.6, Me<sub>2</sub>CH), 1.67–1.82(1 H, m, PCCH<sub>A</sub>H<sub>B</sub>), 1.93–2.04 (2 H, m, 2-H<sub>A</sub>H<sub>B</sub>), 2.54 (1 H, qd, J4.2 and 13.9, PCH), 4.06 (1 H, tdd, J 4.2, 9.1 and 12.8, OCH), 4.37 (1 H, dd, J 4.5 and 5.9, NCH), 7.13-7.500 (11 H, m, Ph<sub>2</sub>PO and PhCN) and 7.56–7.84 (4 H, m, Ph<sub>2</sub>PO and PhCN);  $\delta_{\rm C}({\rm CDCl}_3)$ 21.6 (Me), 22.9 (Me), 26.6 (Me<sub>2</sub>C), 33.7 (PCCH<sub>2</sub>), 41.0 (d, J 88, PCH), 42.1 (OCCH2), 53.1 (NCH), 68.7 (OCH), 125.6, 126.0, 126.9, 128.4, 128.4, 128.6, 128.7, 130.6, 130.6, 131.0, 131.0, 131.3, 131.5, 132.5 (d, J 95, ipso C), 132.9 (d, J 93, ipso C) and 144.0 (NC- $C_{aryl}$ ); m/z 421 (M<sup>+</sup>, 2%), 317 (M<sup>+</sup> – PhCN, 1.8),  $316 (M^+ - PhCH_2N, 4), 301 (M^+ - PhC_2H_5N, 9), 260$  $[Ph_2P(O)C_3H_7O, 21], 229 [Ph_2P(O)C_2H_4, 98],$ 215 [Ph<sub>2</sub>P(O)CH<sub>2</sub>, 19], 202 (Ph<sub>2</sub>POH, 100), 201 (Ph<sub>2</sub>PO, 69), 106 (PhMeN, 17), 91 (PhCH<sub>2</sub>, 70) and 77 (Ph, 45).

NOE Difference Experiments on anti,anti- and anti,syn-1-Amino-4-diphenylphosphinoyl-6-methyl-1-phenylheptan-3-ol 6f. —Isomer A. Experiments were performed on the mixture of diastereoisomers. Irradiation at  $\delta$  3.8 (NCH) gave enhancements at 8.0–7.0 (unassigned aromatic protons, mostly negative NOEs), 4.2 (OCH), 2.1 (2-H<sub>A</sub>H<sub>B</sub>), 1.8 (2-H<sub>A</sub>H<sub>B</sub>), 0.8 (CMe<sub>A</sub>Me<sub>B</sub>, negative NOE), and 0.7 (CMe<sub>A</sub>Me<sub>B</sub>, negative NOE). Irradiation at  $\delta$  4.2 (OCH) gave enhancements at 8.0–7.0 (unassigned aromatic protons), 3.8 (NCH), 2.7 (PCH), 2.1 (2-H<sub>A</sub>H<sub>B</sub>), 1.8 (2-H<sub>A</sub>H<sub>B</sub>), 1.7 (PCCH<sub>A</sub>H<sub>B</sub>), 1.6 (PCCH<sub>A</sub>H<sub>B</sub>), 0.8 (CMe<sub>A</sub>Me<sub>B</sub>) and 0.7 (CMe<sub>A</sub>Me<sub>B</sub>).

Isomer B. Irradiation at  $\delta$  4.1 (OCH) gave enhancements at  $\delta$  8.0–7.0 (unassigned aromatic protons, mostly small NOEs), 4.4 (NCH, negative NOE), 2.5 (PCH), 2.0 (2-H<sub>A</sub>H<sub>B</sub>, positive NOE to the lower-field proton and negative NOE to the higher-field proton), 0.8 ( $CMe_AMe_B$ ) and 0.7 ( $CMe_AMe_B$ ). Irradiation at  $\delta$  4.4 (NCH) gave enhancements at  $\delta$  8.0–7.0 (unassigned aromatic protons, mostly small NOEs), 4.1 (OCH), 2.0 (2-H<sub>A</sub>H<sub>B</sub>), 0.8 ( $CMe_AMe_B$ , small NOE) and 0.7 ( $CMe_AMe_B$ , small NOE).

(1R\*,3S\*,4R\*)- and (1S\*,3S\*,4R\*)-1-Amino-4-diphenylphosphinoyl-6-methyl-1-phenylheptan-3-ols 7f.-By the above method, NaBH<sub>4</sub> (70 mg, 1.8 mmol), syn-5-(1'-diphenylphosphinoyl-3'-methylbutyl)-3-phenyl-4,5-dihydroisoxazole 5u (150 mg, 0.36 mmol) and NiCl<sub>2</sub>·6H<sub>2</sub>O (189 mg, 0.80 mmol) gave the amino alcohols 7f, as a 2:1 mixture of the diastereoisomers A and **B**, respectively, as needles (135 mg, 89%), m.p. 112-116 °C (Found: M<sup>+</sup>, 421.2211. C<sub>26</sub>H<sub>32</sub>NO<sub>2</sub>P requires *M*, 421.2170); *R*<sub>F</sub> (CH<sub>2</sub>Cl<sub>2</sub>-MeOH-NH<sub>3</sub>, 100:10:2) 0.23 and 0.16; v<sub>max</sub>/cm<sup>-1</sup> (CH<sub>2</sub>Cl<sub>2</sub>) 3520 and 3410 (NH<sub>2</sub>), 3500-3000 (OH), 2990-2800 (CH), 1605 and 1590 (Ph), 1365 (P-Ph), 1170-1160 (P=O) and 1120 (C-O);  $\delta_{\rm H}$ (CDCl<sub>3</sub>, 400 MHz) 0.53 (3 HA, d, J 6.5,  $CMe_{A}Me_{B}$ , 0.56 (3 HB, d, J 6.5,  $CMe_{A}Me_{B}$ ), 0.72 (3 HA, d, J 6.5, CMe<sub>A</sub>Me<sub>B</sub>), 0.75 (3 HB, d, J 6.5, CMe<sub>A</sub>Me<sub>B</sub>), 1.0-1.1 (1 HA and **B**, m, Me<sub>2</sub>CH), 1.4–1.8 (3 HA and **B**, m, 3 H, of  $2 \times CH_2$ ), 2.0– 2.1 (1 HA and B, m, 1 H of 2 × CH<sub>2</sub>), 2.2–2.35 (1 HA and B, m, PCH), 4.00 (1 HB, t, J 6.7, NCH), 4.14 (1 HB, m, OCH), 4.19 (1 HA, dd, J 3.9 and 8.6, NCH), 4.26 (1 HA, m, OCH), 7.19-7.26 (2 HA and B, m, Ph<sub>2</sub>PO and PhCN), 7.41-7.53 (8 HA and B, m,

Ph<sub>2</sub>PO and PhCN) and 7.68–7.82 (5 HA and B, m, Ph<sub>2</sub>PO and PhCN);  $\delta_{C}(CDCl_{3})$  22.0 (BC $Me_{A}Me_{B}$ ), 22.2 (AC $Me_{A}Me_{B}$ ), 22.4 (ACM $e_{A}Mem_{B}$ ), 22.6 (BC $Me_{A}Me_{B}$ ), 27.1 (d, J ca. 7, BM $e_{2}$ CH), 27.4 (d, J 6, AM $e_{2}$ CH), 31.0 (ACH<sub>2</sub>), 31.4 (BCH<sub>2</sub>), 40.4 (d, J 69, APCH), 41.3 (d, J 69, BPCH), 43.7 (CH<sub>2</sub>), 43.8 (CH<sub>2</sub>), 52.5 (ANCH), 55.2 (BNCH), 67.2 (AOCH), 69.7 (BOCH), 126.1, 126.2, 127.0, 127.1, 127.4, 128.4, 128.5, 128.6, 128.8, 128.9, 130.9, 131.0, 131.1, 131.2, 131.7, 131.9, 131.9, 133.4, 145.4 (BNC- $C_{aryl}$ ) and 169.6 (ANC- $C_{aryl}$ ); m/z 421 (M<sup>+</sup>, 2%), 316 (M<sup>+</sup> – PhCH<sub>2</sub>N, 6), 301 (M<sup>+</sup> – PhC<sub>2</sub>H<sub>5</sub>N, 6), 372 [Ph<sub>2</sub>P(O)C<sub>5</sub>H<sub>11</sub>, 6], 260 [Ph<sub>2</sub>P(O)C<sub>3</sub>H<sub>7</sub>O, 16], 229 [Ph<sub>2</sub>P(O)C<sub>2</sub>H<sub>4</sub>, 60], 202 (Ph<sub>2</sub>POH, 71), 201 (Ph<sub>2</sub>PO, 100), 106 (PhCH<sub>3</sub>N, 50), 105 (PhCH<sub>2</sub>N, 58) and 77 (Ph, 41).

Methods for Performing Horner–Wittig Eliminations on 1 mmol of Material.—Method A. NaH (50% dispersion in oil; ca. 1.5 mmol, 72 mg) was added to a stirred solution of the  $\beta$ hydroxydiphenylphosphine oxide (1 mmol) in DMF (ca. 15 cm<sup>3</sup>) under Ar at room temp., and the mixture stirred overnight. Et<sub>2</sub>O (100 cm<sup>3</sup>) was added to the mixture which was then washed with 2.2 mol dm<sup>-3</sup> aqueous NaOH (3 × 100 cm<sup>3</sup>). The organic layer was then extracted with 0.1 mol dm<sup>-3</sup> aqueous HCl (2 × 75 cm<sup>3</sup>), and the combined acidic extracts were basified with 0.75 mol dm<sup>-3</sup> aqueous NaOH and extracted with Et<sub>2</sub>O (3 × 75 cm<sup>3</sup>). These Et<sub>2</sub>O extracts were combined and dried (Na<sub>2</sub>SO<sub>4</sub>) and 10 mol dm<sup>-3</sup> HCl (2 mmol, 0.2 cm<sup>3</sup>) was added to them; the Et<sub>2</sub>O was then removed under reduced pressure. The remaining water was removed azeotropically using MeCN to give the amine hydrochlorides.

Method B. As method A, but elimination performed at 50 °C for 1-2 h.

Hept-1-en-4-amine Hydrochloride **8a**.—By method A. NaH (150 mg, 3 mmol) and 4-amino-1-diphenylphosphinoylheptan-2-ol **6a** (700 mg, 2.11 mmol) gave the amine hydrochloride **8a** as a pale brown solid (141 mg, 45%), m.p. (EtOAc) 130–131 °C (Found: MH<sup>+</sup>, 114.1278. C<sub>7</sub>H<sub>15</sub>N requires  $MH^+$ , 114.1282);  $v_{max}/cm^{-1}$  (Nujol mull) 3190–2720 (CH), 1605 (C=C), 1515, 1460 and 1380 (alkyl chain) and 720 (CH=CH);  $\delta_{H}(CD_{3}OD)$  0.98 (3 H, t, J 7.1, Me), 1.29–1.54 (2 H, m, MeCH<sub>2</sub>), 1.56–1.8 (2 H, m, MeCCH<sub>2</sub>), 2.30–2.51 (2 H, m, C=CCH<sub>2</sub>), 3.23 (1 H, quintet, J 6.4, NCH), 5.24 (1 H, dd, J 1.4 and 11.2, CH=CH<sub>cis</sub>H<sub>trans</sub>), 5.25 (1 H, dd, J 1.4 and 17.3, CH=CH<sub>cis</sub>H<sub>trans</sub>) and 5.82 (1 H, tdd, J 7.2, 9.8 and 17.3, CH=CH<sub>2</sub>);  $\delta_{C}(CD_{3}OD)$  14.1 (Me), 19.4 (CH<sub>2</sub>), 35.4 (CH<sub>2</sub>), 37.8 (CH<sub>2</sub>), 52.2 (NCH), 120.4 (HC=CH<sub>22</sub>), and 133.3 (CH<sub>2</sub>=CH); m/z 114 (MH<sup>+</sup>, 0.2%), 82 (C<sub>5</sub>H<sub>10</sub>, 2), 72 (C<sub>4</sub>H<sub>10</sub>N, 100), 70 (C<sub>4</sub>H<sub>8</sub>N, 38) and 55 (C<sub>4</sub>H<sub>7</sub>, 12).

1-Phenylbut-3-enylamine Hydrochloride **8b**.—By method A. NaH (20 mg, 0.4 mmol) and 4-amino-1-diphenylphosphinoyl-4phenylbutan-2-ol **6b** (107 mg, 0.29 mmol) gave the amine hydrochloride **8b** as a brown oil (15 mg, 28%), which could not be purified. The amine hydrochloride **8b** was, therefore, characterised impure (Found: M<sup>+</sup> – C<sub>3</sub>H<sub>5</sub>, 106.0661. C<sub>10</sub>-H<sub>13</sub>N requires  $M - C_3H_5$ , 106.0657);  $v_{max}/cm^{-1}$  (CH<sub>2</sub>Cl<sub>2</sub>) 3700 and 3600 (NH<sub>2</sub>), 3040–2700 (CH), 1690 (C=C), 1605 and 1510 (Ph) and 925 (C=C);  $\delta_{\rm H}$ (CD<sub>3</sub>OD) 2.73 (2 H, dt, J 1.0 and 7.2, PhCCH<sub>2</sub>), 4.34 (1 H, t, J 7.4, NCH), 5.15 (1 H, dd, J 1.7 and 9.9, CH=CH<sub>trans</sub>H<sub>cis</sub>), 5.19 (1 H, qd, J 1.4 and 17.0, CH=CH<sub>trans</sub>H<sub>cis</sub>), 5.69 (1 H, tdd, J 7.0, 10.1 and 17.1, H<sub>2</sub>C=CH) and 7.42–7.47 (5 H, m, Ph); m/z 148 (MH<sup>+</sup>, 0.3%), 147 (M<sup>+</sup>, 0.2), 131 (M<sup>+</sup> – NH<sub>2</sub>, 1), 121 (M<sup>+</sup> – C<sub>2</sub>H<sub>2</sub>, 0.6), 106 (PhCH<sub>3</sub>N, 100) and 77 (Ph, 20).

(E)-Oct-6-en-4-amine Hydrochloride 8c.—By method B. NaH (72 mg, 1.4 mmol) and anti, anti- and anti, syn-5-amino-2diphenylphosphinoyloctan-3-ol 6c (278 mg, 0.81 mmol) gave the amine hydrochloride 8c (97 mg, 73.5%) as whitish needles, m.p. (EtOAc) 152–154 °C (Found: MH<sup>+</sup>, 128.1427.  $C_8H_{17}N$  requires  $MH^+$ , 128.1439);  $\nu_{max}/cm^{-1}$  (CDCl<sub>3</sub>) 3280–2700 (C–H), 1600 (C=C), 1510, 1460 and 1380 (alkyl chain), 770 (CH=CH *trans*);  $\delta_H$ (CD<sub>3</sub>OD, 400 MHz) 1.09 (3 H, t, J 7.3, CH<sub>2</sub>Me), 1.51–1.60 (2 H, m, MeCH<sub>2</sub>), 1.66–1.77 (2 H, m, MeCCH<sub>2</sub>), 1.83 (3 H, d, J 6.3, CHMe), 2.40 (1 H, td, J 7.2 and 14.2, C=CCH<sub>A</sub>H<sub>B</sub>), 2.50 (1 H, td, J 6.5 and 14.0, C=CCH<sub>A</sub>H<sub>B</sub>), 3.30 (1 H, quintet, J 6.4, NCH), 5.55 (1 H, qtd, J 1.3, 7.2 and 15.2, MeC=CH) and 5.79 (1 H, qd, J 6.5 and 15.2, MeCH=C);  $\delta_C$ (CD<sub>3</sub>OD) 14.1 (Me), 18.2 (Me), 19.5 (CH<sub>2</sub>), 35.5 (CH<sub>2</sub>), 36.7 (CH<sub>2</sub>), 52.6 (NCH), 125.5 (C=C) and 132.0 (C=C); m/z 128 (MH<sup>+</sup>, 0.2), 72 (C<sub>4</sub>H<sub>10</sub>N, 100) and 55 (C<sub>4</sub>H<sub>7</sub>, 13).

(E)-1-Phenylpent-3-en-1-amine Hydrochloride 8d.—By method B. NaH (80 mg, 1.7 mmol) and anti, anti- and anti, syn-1-amino-4-diphenylphosphinoyl-1-phenylpentan-3-ol 6d (227 mg, 0.60 mmol) gave the amine hydrochloride 8d as a yellow and white solid (98 mg, 81%), recrystallised from EtOAc-hexane as needles (yield not recorded), m.p. 168-171 °C (Found: C, 66.8; H, 8.3; N, 6.95. C<sub>11</sub>H<sub>15</sub>N·HCl requires C, 66.8; H, 8.2; N, 7.1%); v<sub>max</sub>/cm<sup>-1</sup> (Nujol mull) 3180–2780 (CH), 1670 (C=C), 1600, 1565 and 1510 (Ph and NH<sub>3</sub><sup>+</sup>), 965 (CH=CH trans) and 765 and 700 (Ph);  $\delta_{\rm H}$ (CD<sub>3</sub>OD) 1.64 (3 H, dd, J 1.2 and 6.4, Me), 2.65 (2 H, 2nd order m, CH<sub>2</sub>), 4.27 (1 H, t, J 7.4, NCH), 5.33 (1 H, qtd, J 1.3, 7.3 and 14.8, MeCH=CH), 5.63 (1 H, tqd, J 1.1, 6.4 and 14.1, MeCH) and 7.36–7.47 (5 H, m, Ph);  $\delta_{\rm C}({\rm CD}_3{\rm OD})$ 18.2 (Me), 39.0 (CH<sub>2</sub>), 56.7 (NCH), 125.6 (MeC), 128.3, 130.1, 130.2, 131.8 and 138.2 (ipso C); m/z 106 (PhCH<sub>3</sub>N, 100%), 91 (PhCH<sub>2</sub>, 30) and 77 (Ph, 32).

(Z)-1-Phenylpent-3-enylamine Hydrochloride 9a.—By method B. NaH (48 mg, 0.9 mmol) and syn, anti- and syn, syn-1-amino-4diphenylphosphinoyl-1-phenylpentan-3-ol 7d (290 mg, 0.73 mmol) gave the amine hydrochloride 9a (109 mg, 74%) as pale yellow needles, almost pure by NMR analysis. Recrystallisation from EtOAc gave needles (27 mg, 18%), m.p. 176-179 °C;  $v_{max}/cm^{-1}$  (CDCl<sub>3</sub>) 3600–3400 and 3250–3170 (NH), 3170–2750 (CH), 1660 (C=C), 1600 and 1510 (Ph and NH3<sup>+</sup>), 1455 and 1380 (alkyl chain), 755 (Ph) and 700 (CH=CH cis);  $\delta_{\rm H}$ (CD<sub>3</sub>OD) 1.56 (3 H, ddd, J 0.8, 1.6 and 7.0, Me), 2.68 (1 H, ddd, J small, ca. 7.7 and ca. 14.5, CH<sub>A</sub>H<sub>B</sub>), 2.80 (1 H, ddd, J 0.5, 7.0 and 14.6, CH<sub>A</sub>H<sub>B</sub>), 4.29 (1 H, br t, J ca. 7.5, NCH), 5.25 (1 H, qtd, J 1.8, 7.3 and 10.8, MeC=CH), 5.61 (1 H, tqd, J 1.5, 6.9 and 10.8 (MeCH) and 7.37-7.56 (5 H, m, Ph);  $\delta_{\rm C}({\rm CD_3OD})$  13.1 (Me), 33.1 (CH<sub>2</sub>), 56.6 (NCH), 124.5 (MeC), 128.4, 129.6, 130.2 and 138.1 (ipso C); m/z 149 (MH<sup>+</sup> – CH, 1.9%), 106 (PhCH<sub>3</sub>N, 100%) and 77 (Ph, 18).

(E)-6-Methyl-1-phenylhept-3-enylamine Hydrochloride **8f**.— By method B. NaH (38 mg, 0.7 mmol) and anti,anti- and anti, syn-1-amino-4-diphenylphosphinoyl-6-methyl-1-phenylheptan-3-ol **6f** (233 mg, 0.55 mmol) gave the amine hydrochloride **8f** (98 mg, 74%) as very pale yellow plates, m.p. 169–172 °C (Found: MH<sup>+</sup>, 204.1742. C<sub>14</sub>H<sub>21</sub>N requires MH<sup>+</sup>, 204.1752);  $v_{max}$ /cm<sup>-1</sup> (CDCl<sub>3</sub>) 3560–3300 (NH), 3270–2750 (CH), 1605 (C=C and Ph), 1515, 1460 and 1380 (alkyl chain), 975 (CH=CH trans) and 700 (Ph);  $\delta_{\rm H}$ (CD<sub>3</sub>OD) 0.76 (3 H, d, J 6.6, CMe<sub>A</sub>Me<sub>B</sub>), 0.80 (3 H, d, J6.6, CMe<sub>A</sub>Me<sub>B</sub>), 1.51 (1 H, nonet, CHMe<sub>2</sub>), 1.84 (2 H, 2nd order m, Me<sub>2</sub>CHCH<sub>2</sub>), 2.68 (2 H, m, NCCH<sub>2</sub>), 4.27 (1 H, dd, J 7.1 and 8.0, NCH), 5.25 (1 H, td, J 7.1 and 15.2, C=CH), 5.54 (1 H, td, J 7.1 and 15.3, C=CH) and 7.39–7.48 (5 H, m, Ph);  $\delta_{\rm C}$ (CD<sub>3</sub>OD) 22.4 (Me), 22.6 (Me), 29.3 (Me<sub>2</sub>CH), 38.9 (CH<sub>2</sub>), 42.9 (CH<sub>2</sub>), 56.8 (NCH), 125.4 (C=C or Ph), 128.4 (C=C or Ph), 130.2 (C=C or Ph), 136.0 (C=C or Ph) and 138.0 (*ipso* C); *m/z* 204 (MH<sup>+</sup>, 0.03%), 120 (PhC<sub>2</sub>H<sub>5</sub>N, 0.7) and 106 (PhCH<sub>3</sub>N, 100).

## References

- 1 R. S. Garigipati, D. M. Tschaen and S. M. Weinreb, J. Am. Chem. Soc., 1990, 112, 3475.
- 2 S. M. Weinreb, Acc. Chem. Res., 1988, 21, 313.
- See, for example, Y. Yamamoto, S. Nishii, K. Maruyama, T. Komatsu and W. Ito, J. Am. Chem. Soc., 1986, 108, 7778; R. W. Hoffmann and A. Endesfelder, *Liebigs Ann. Chem.*, 1987, 215; G. E. Keck and E. J. Enholm, J. Org. Chem., 1985, 50, 146.
- 4 Y. Yamamoto, T. Komatsu and K. Maruyama, J. Org. Chem., 1985, 50, 3115.
- 5 Preliminary communication: S. K. Armstrong, E. W. Collington, A. Naylor and S. Warren, *Tetrahedron Lett.*, 1991, **32**, 4171.
- 6 A. Padwa, Comprehensive Organic Synthesis, eds. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, vol. 4, p. 1069; 1,3-Dipolar Cycloaddition Chemistry, ed. A. Padwa, Wiley-Interscience, New York, 1984, two volumes.
- 7 M. Christl and R. Huisgen, Chem. Ber., 1973, 106, 3345.
- 8 T. Mukaiyama and T. Hoshino, J. Am. Chem. Soc., 1960, 82, 5339; J. E. McMurry, Org. Synth., 1973, 53, 59.
- 9 A. Hassner and K. M. L. Rai, Synthesis, 1989, 57.
- 10 D. R. Borthakur and J. S. Sandhu, J. Chem. Soc., Chem. Commun., 1988, 1444.
- 11 The X-ray crystal structure of compound 4r was performed by R. B. Lamont of Glaxo Group Research at Greenford and that of compound 4t by M. Doyle and P. R. Raithby at Cambridge.
- 12 (a) K. N. Houk, H.-Y. Duh, Y.-D. Wu and S. R. Moses, J. Am. Chem. Soc., 1986, 108, 2754; see also(b) K. N. Houk, S. R. Moses, Y.-D. Wu, N. G. Rondan, V. Jäger, R. Schohe and F. R. Fronczek, J. Am. Chem. Soc., 1984, 106, 3880.
- D. P. Curran and S. A. Gothe, *Tetrahedron*, 1988, 44, 3945;
   M. De Amici, C. De Micheli, A. Ortisi, G. Gatti, R. Gandolfi and L. Toma, *J. Org. Chem.*, 1989, 54, 793.
- 14 See, for example: A. P. Kozikowski and A. K. Ghosh, J. Org. Chem., 1984, 49, 2762; V. Jäger and R. Schohe, Tetrahedron, 1984, 40, 2199.
- 15 R. Annunziata, M. Cinquini, F. Cozzi, A. Gilardi and A. Restelli, J. Chem. Soc., Perkin Trans. 1, 1985, 2289.
- 16 Dr. J. M. Brown, personal communication; cf R. W. Taft, D. Gurka, L. Joris, P. von R. Schleyer and J. W. Rakshys, J. Am. Chem. Soc., 1969, 91, 4801.
- 17 R. C. Wade, D. G. Holah, A N. Hughes and B. C. Hui, Catal. Rev., Sci. Eng., 1976, 14, 211, and references therein; S. G. Kim and J. R. Brock, J. Colloid and Interface Sci., 1987, 116, 431.
- 18 A. D. Buss and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1985, 2307.
- 19 T.-L. Ho and G. A. Olah, J. Org. Chem., 1977, 42, 3097.
- 20 W. D. Emmons and J. P. Freeman, J. Org. Chem., 1957, 22, 456.
- 21 D. W. Chasar, Synthesis, 1982, 841.

Paper 3/00942D Received 16th February 1993 Accepted 2nd March 1993